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Chapter 0

Introduction

These lecture notes, intended as support to an intensive course at Scoala Normala Superioara din
Bucuresti, cover classical properties of function spaces.

There is no unity of subjects, but it is a course that I would have loved to entitle ”Some theorems in
Analysis that fascinate me”. Beauty, which is a subjective matter, was the main guide in choosing
the topics. The other point was the required background, that I wanted to be the normal one for
a fourth year student: a good knowledge of standard measure theory (Radon-Nikodym and Hahn
decomposition theorems, Riesz representation theorem), the standard theory of distributions and
basics about Sobolev spaces.

Three classical textbooks were the source of the presentation (which does not pretend to the orig-
inality):

[1] Elias M. Stein, Harmonic Analysis: real variable methods, orthogonality, and oscillatory inte-
grals, Princeton University Press, 1993

2] William P. Ziemer, Weakly Differentiable Functions, Springer, 1989

My hope is that, after tasting the results proved in these notes, the reader will want to take a
closer look to these wonderful books, which are a must in the library of an analyst.

The notes are divided into three parts:

Part I is introductory: all the (simple but) non standard tools required for further developments
are proved in this part; the aim was to provide the reader a self contained text (apart for the
prerequisites). We talk, in this part, about: the distribution function, Lorentz spaces, Hardy’s
inequality, Marcinkiewicz’s interpolation theorem, coverings of sets with balls and cubes (Vitali’s
and Whitney’s lemma). The purpose was not to discuss in full generality these results: only the
simplified versions required in the remaining part of the notes were presented.

Part II could have been named: ”L! and L* are wrong spaces”. We introduce and prove the
most useful properties of two other spaces, the Hardy space and the bounded mean oscillation
space. (The first one is slightly smaller than L', the second one slightly larger than L>.) We also
try to briefly explain why these spaces are "good” by considering a regularity problem in PDE’s,
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4 CHAPTER 0. INTRODUCTION

for which these spaces are more appropriate than L' and L*. The presentation is very much
influenced by [1].

Part III could be briefly described as follows: ”Young’s inequality is wrong”. Recall that Young’s
inequality asserts that, if f € L” and g € L7, then fxg € L", where 1/p+1/qg =1+ 1/r. The
main result of this part is that we can weaken the assumption on, say, f, and yet obtain a better
information concerning f * g. This part follows essentially [2].

Enjoy the reading!



Part 1

Basic Tools






Chapter 1

The distribution function

Throughout this course, we consider on R" the usual Lebesgue measure dz. The measure of a set
A C RY will be simply denoted by |Al.
Let f : RY — C be a measurable function. We consider the distribution function of f,

F(t)=|{z €eRY; |f(z)| > t}]. (1.1)

Clearly, F': [0, 00) — [0, 00| is non in creasing and thus measurable. F is related to various norms
of f via

Proposition 1. For 1 < p < oo we have

o) I, =p / LR () dt

0

b) (Chebyshev’s inequality) F(t) < Hft‘fip.
Proof. a) We have
T R e
W5 = [ |f(z)Pdx = ptt~tdtde =p [ 77! dedt =p [ /1 F(t)dL.
° C Amlf@)] >t} ’
(1.2)
b) Chebyshev’s inequality follows from
ifin= [ Wepez [ ed—rr), (1.3
{z;[f(2)] > £} {z; [f(2)] > £}
O



8 CHAPTER 1. THE DISTRIBUTION FUNCTION

By copying the proof of a) above, we obtain the following

Proposition 2. Let @ : [0,00) — [0,00), ® € C', be a non decreasing function s. t. ®(0) = 0.
Then

[ ez

RN

/ ()P ()t (1.4)

1.1 Lorentz spaces

One may read the property a) in Proposition 1 as [|f|7, = p||tF1/p(t)||’zp<(O’ s0): dt/t)’ This

suggests a more general definition: a measurable function f belongs to the Lorentz space LP?
(1<p<oo,1<q<oo)if

[ fllzea = ||tF1/p(t)||Lq((0, o0); dt /t) < O©- (1.5)

Despite this notation, || - ||z»¢ is not a norm (but almost: it is a quasi-norm). When ¢ = p,
the corresponding Lorentz space coincides with LP. When ¢ = oo, the corresponding space LP**°
is called the weak LP, also denoted by L (the Marcinkiewicz space). Clearly, a function f
belongs to L if and only if its distribution function F' satisfies a Chebyshev type inequality:

F(t) < tgp for each t > 0.

It is well known that there is no inclusion relation for the L? spaces. However, for fixed p, the
Lorentz spaces are monotonic in ¢:

Proposition 3. Let 1 < q<r < oo. Then LP? C LP".
Proof: Assume first that r = co. If f € L”9, then

o0 S S 1
I £11%p0 = /tquq/p(t)dt > /tquq/p(t)dt > /tquq/p(s)dt = gsqu/p(s). (1.6)
0 0 0

C
Thus FY?(s) < =, ie. f € LP™.
s

Let now r < oo and let f € LP4. Then, using Holder’s inequality and the case r = oo, we find
that

[P0 L7 (0, o0 ety < WEF " O1 a0, 00): a0 IO 0, syt sy < 00 (7

Incidentally, we proved the stronger statement

I fllzer < Clfllppa, 1<p<oo,1<qg<r<oo. (1.8)
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We complete the scale of Lorentz spaces by setting L°9 = L* for all ¢. The above inequality,
combined with the fact that || - ||, is a quasi-norm yields immediately the following

Corollary 1. The inclusion LP? C LP" is continuous, 1 < g < r < 00.

Remark 1. One should understand the Lorentz spaces as “microscopic” versions of the LP spaces.
We mean that the properties of LP4 are very close to those of LP. Here is an example: if Q) is
a bounded set in RY, one may define in an obvious way the spaces LP4(Q). It is easy to prove
that, if p1 < pa, then LP*%2(Q) C LPY(Q) for all the possible values of q1,qz. This is exactly the
incluston relation we have for the standard LP spaces.
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Chapter 2

Elementary interpolation

Theorem 1. (Marcinkiewicz’ interpolation theorem; simplified version) Let 1 < ¢ < oo
and let T : L* N LYRYN) — D' be linear and s. t.

ITflley, < Cillfller, YV f (2.1)

and
ITfllze, < Collfllza, ¥ f. (2.2)

(In other words, T extends by density as a continuous operator from L' into L} and from L9 into
L9.) Then T is a continuous operator from LP into LP, for each 1 < p < q, i. e.

ITflle < Cllfllze, ¥ f€LPNLE (2.3)

4. and thus
we have the following consequence, which is the form we usually make use of the above theorem

Corollary 2. Let 1 < g < oo and let T : L* N LYRY) — D' be linear and s. t.
1T flley, < Cillfll, YV f (2.4)

Before proceeding to the proof of the theorem, let us note that L? embeds into LY

and
1T flle < Collfllpa, ¥ f. (2.5)

Then T extends as a continuous operator from LP into LP, 1 < p < q.

Proof. Lett > 0 and let f € L'N LY. We are going to estimate the distribution function of T'f. For
F(), @) > ¢
0, otherwise

and fo = f — f1. Since Tf = T'f1 + Tfo, we have |T'f| >t = |T'f1| > t/2 or |T'fs| > t/2, and

thus
20 QQCQ
TSl >t} < HITHI > /23 + {IT fo] > t/2}] < 71||fl||L1 + tqq | fallZa- (2.6)

this purpose, we cut f at height ¢, i. e. we write f = f1+ fo, where fi(x) =

11



12 CHAPTER 2. ELEMENTARY INTERPOLATION

Therefore,
ITfIE, = p / TS > 1)) < 2C, / 72| fy]| 1 + 29pC / P, (2.7)

Fla), ifa>t

Next, if F'is the distribution function of f, then the distribution function of f; is .
F(t), ifac<t,

ifa>t
and the one of f, is 0, 1 =% Thus
Fa) = F(t), ifa<t
o0 t
| fillor = tF(t) + / F(a)da  and || f2]|}, = q/oﬂlF(a)da —t1F (). (2.8)
t 0

By combining (2.6) and (2.8) and applying Fubini’s theorem (to interchange the order of integration
over o and t), we find that

20, 2109
T pp§p< - q) 1, 2.9
1T £ P da 1N (2.9)

]

Remark 2. We see that the estimate we obtain for the norm of T from LP into LP blows up as
p — 1 orp — q. This is not a weakness of the proof. If this norm remains bounded as, say,
p — 1, then T must continuous from L' into L', which may not be the case.

There is a way to improve the estimate (2.9): instead of cutting f at height ¢, we cut it at
height at, where a > 0 is fixed. The above computations yield this time :

20, 24 (14
TfIE, <pllf pp( a' P —2Lq?P ), 2.10
ITflz < plAIL P p— (2.10)

Optimizing the above r. h. s. over a > 0 (it is minimal when a = 1/2(C;/C,)/(4~Y), we find the
following

Theorem 2. With the notations and under the hypotheses of the preceding theorem, let 6 € (0,1)

1 0 1-4
be the (unique) number s. t. — = 1 + ——. Then the norm of T from LP into LP satisfies
p q
T e < oI TN 1T Y - (2.11)

This conclusion is reminiscent from the one of the Riesz-Thorin convexity theorem.



Chapter 3
Hardy’s inequality

We present two (equivalent) forms of Hardy’s inequality. The first one generalizes the usual (and
o0 o

F2
historically first) Hardy’s inequality / <2x>dx < 4/(F’(x))2dx, F € C§°((0,00)). The second
T

0 0
one will be needed later in the study of the Lorentz spaces.

Theorem 3. (Hardy) Let 1 <p < oo andr >0 and let f: (0,00) — R.

a) [f/ |f(z) P2~ dx < oo, then f € L} .([0,00)).
0

b) With F(z) = /f(t)dt, we have
0

7|F(x)|px_7"_1dx < (g)pﬁ F(z)PaP"Vda. (3.1)

Proof. In view of the conclusions, we may assume f > 0. In this case, it suffices to prove (3.1).

y p
We want to apply Jensen’s inequality in order to estimate the integral ( / f (t)dt) . We consider,
0

on (0, z), the normalized measure p = L u=r/pgr/p=1g¢ Then (with u — u? playing the role of the

convex function)

T x

(/ swa) = () ([ rorvan) < () fisorriran o2

0 0

13



14 CHAPTER 3. HARDY’S INEQUALITY

which yields

( / f(t)dt) < (1—9) 2 (1-1/p) / FR(t)P gy, (3.3)
T
0 0
Thus
/ PPz e < <-> / w1l / PR g — <-> / e (3.4)
T T
0 0 0 0
by Fubini’s theorem. O]

Corollary 3. (Hardy) With 1 < p < oo and r > 0, we have

1o

xT

"l < (g)p / | (z)[Pa?+ . (3.5)
0

Proof. We may assume f > 0. We apply the preceding theorem to the map g given by g(t) =
t=2f(t7!) and find that

7 (/thf(t)dt)px“dx < (g)pffp(xl)xwld]; _ (];)P /O‘Ofp<y)yp+r1dm' (3.6)

xT

We next perform, in the integral / t=2f(t)dt, the substitution t = s~!, next we substitute, in the

0
first integral in (3.6), y = 27!, and obtain the desired result. O]



Chapter 4

Coverings

4.1 The Vitali covering lemma (simplified version)

Let F be a finite family of balls in RY.

Lemma 1. (Vitali’s lemma). F contains a subfamily F' of disjoint balls such that

S iBl=cl Bl

BeF! BeF
Here, C' depends only on the space dimension /N, not on the family F.
Proof. Let By be the largest ball in F. Let B be the largest ball in F that does not intersect By, B3

the largest ball in F that does not intersect neither By nor By, and so on. Let F' = {~Bl7 By, ... }.
Note that, for each B € F, there is some j s. t. BNB; # (). For each ball B in F’, let B be the ball

having the same center as B and the radius thrice the one of B. We claim that U B C U B.
BeF BeF

Indeed, let B € F and let j be the smallest integer such that B N B; # (). Since BN B;_; = 0,

the radius of B is at most the one of B;, for otherwise we would have picked B instead of B; at

step j in the construction of F'. Since B N B; # (), we find that B C Bj.

It follows that B
‘UBl<I Bl<3" Y 1Bl (4.1)

BEF BeF! BeF
which is the desired result with C' = 3~V O]

4.2 Whitney’s covering
Throughout this section, the norm we consider on RY is the || - ||o, one.
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16 CHAPTER 4. COVERINGS

Let FF C RY be a non empty closed set and let O = RN \ F. If C is a (closed) cube, let I(C')
be its size, i. e. the length of its edges.

Lemma 2. (Whitney’s covering lemma) There is a family F of closed cubes s. t.

a) 0= C;
CeF
b) distinct cubes in F have disjoint interiors;

c) cH(C) < dist(C, F) < cl(C) for each C € F.
Here, ¢ depends only on N.

Proof. We may assume that 0 € F. For j € Z, let F; be the grid of cubes of size 2/, with sides
parallel to the coordinate axes, s. t. 0 be one of the vertices. Note that each cube C' € F; is
contained in exactly one predecessor C" € Fj 1. In addition, each cube has an ancestor containing
0. Thus, the non increasing sequence dist(C, F'), dist(C", F'), dist(C", F'), ..., becomes 0 starting

with a certain range. We throw away all the cubes contained in U F;s. t. dist(C, F) < [(C) and

J
call F the family of all kept cubes C' s. t. their predecessors C’' were thrown away.
Note that, by definition, if C' € F, then dist(C, F') > [(C), while there are some y € C' and z € F
s. t. ||y — z|lo <2U(C). Let x € C; then dist(C, F) < ||z — z]|oo < 3I(C), so that ¢) holds with
c=3.
Let z € O. If j is sufficiently close to —oo, then we have dist(C, F') > [(C) whenever C' € F; and
x € C. Pick any such j and C and set k = sup{l € N ; dist(CV, F) > [(C®)}. Then k is finite
and it is clear from the definition that x € C*) € F. Thus a) holds.

Finally, if C, D € U]:J are distinct cubes s. t. Co* N lo)% (), then one of these cubes is contained

J
in the other one. Assume, e. g., that C C D. Then C' C D. Therefore, we can not have at the
same time C' € F and D € F, for otherwise [(C") > dist(C’, F') > dist(D, F') > (D) > I[(C"). O

For a cube C, let C, be the cube concentric with C' and of size three halves the one of C.

Proposition 4. Let F', O and F be as in the proof of the above lemma. Then:

a) O — U O*;

CeF
b) we have d~1(C,) < dist(C,, F) < d I(C,) for each C € F;
c)if v € C,, then e dist(z, F) < dist(C,, F) < e dist(z, F);
d) each point x € O belongs to at most M cubes C,.

Here, d, e and M depend only on N.

Proof. On the one hand, we have dist(C., F) <dist(C, F') < 3l(C) = 2I(C,). On the other hand,
if v € C,, then there is some y € C's. t. |z — yllo < 1/2((C). In addition, dist(y, F') > I(C).
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Thus dist(x, F') > 1/21(C) = 1/3I(C,). Thus b) holds with d = 3. Property c) is a straightforward
consequence of b).

Clearly, C, C O, by b), which implies a) with the help of a) of Whitney’s lemma.

If x € C,, then (by b) and c)) 3/2{(C) = I[(C*) > (de)~! dist(z, F'), and therefore C, C B(z,r),
with r = de dist(x, F'). Thus, if k is the number of cubes C, containing x, we have

=Bz [ clzl U = 3 10] 2 ke/sde) Mist(e, F)Y,

C«NF#D C«NF#D C«NF#D

whence conclusion d). O

Proposition 5. With the above notations, there is, in O, a partition of the unit 1 = Z Yo S. t.:

CeF
a) for each C, supp oo C Cy;

b) |0%pc(z)| < C,|C|710N < ! dist(x, F)~lel when x € supp o¢.

Here, the constants C,, do not depend on O, x and C.
Proof. Fix a function ¢ € C*®(RY;[0,1]) s. t. ¢ = 1 in B(0,1/2) and supp ¢ C B(0,3/4). If
C € F is of size 2] and center z, set (¢ = (((- — x)/l). Note that supp (¢ C C, and that (¢ =1
in C. Moreover, [0%p¢| < Cyl~lel. Set ¢ = Z (e, which satisfies 1 < ¢ < M, by a) in Whitney’s

lemma and d) in the above proposition. Finally, set oo = (/. Properties a) and b) follow
immediately by combining the conclusions of Whitney’s lemma and of the above proposition. [
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Chapter 5

The maximal function

If f is locally integrable, we define the (uncentered) maximal function of f,
1
Mf(z) = sup{ Bl / |f(y)|dy ; B ball containing x }. (5.1)
B

In this definition, one may consider cubes instead of balls. This will affect the value of M f, but
not its size. E.g., if we consider instead

M f(x) = sup{ ﬁ / |f(y)|dy ; Q cube containing x }, (5.2)
Q

then we have C'M'f < Mf < CM'f, where C is the ratio of the volumes of the unit cube
and of the unit ball. Thus the integrability properties of M f remain unchanged if we change the
definition. Similarly, one may consider balls centered at z; this definition yields the centered
maximal function.

A basic property of M f is that it is lower semi continuous, i.e. the level sets {z; Mf(z) >t}
are open.

5.1 Maximal inequalities

When f € L, we clearly have M f € L*°. However, it is not obvious whether, for 1 < p < co and
f € L?, the maximal function has some integrability properties or even whether it is finite a.e.

Theorem 4. (Hardy-Littlewood-Wiener) Let 1 < p < oo and f € LP. Then:
a) Mf is finite a.e.;
b)if 1 <p<oo, then Mf € LP and || Mfllrr < C|f|lLe;

19



20 CHAPTER 5. THE MAXIMAL FUNCTION

Wl ,

c)if p=1, then Mf € Ly, and [Mf|ry, < Clflrr, ice. [{z; Mf(z) >t} < reach
t>0.

Here, C' denotes a constant independent of f.
Proof. When p = oo, the statement is clear and we may take C' = 1. Let next p = 1. We fix some
t>0. Let O ={x; Mf(x)>t}, which is an open set. Thus |O| = sup{ |K|; K compact C O }.
Let K be any compact in O. From the definition of M f, for each x € K there is some ball B

1
/ |f(y)|dy > t. These balls cover K, so that we may extract a finite
B

containing x such that E

covering. Using Vitali’s lemma, we may find a finite family 7’ = {B;} such that

B;N B, =0 forj#k, ﬁ / |f(x)|dx > t, Z |B;| > C|K]|. (5.3)
Bj J
Thus
1l > / @l =Y / @lde > 1Y |B| > ||, (5.4)
J B] J

UB;
J

C
Taking the supremum over K in the above inequality, we find that |O| < 71l

t

, i.e. the property

c). Letting t — oo, we find a) for p = 1.

We next prove a) for 1 < p < oco. Let f € LP. We split f as f = fi + fo, where fi(z) =
f@) @=L b Z f_ f Then fy € L' and fo € L. Since Mf < Mfy + M,
0, if[f)l <1

we obtain a).

Finally, we prove b) for 1 < p < oo. Let t > 0. We use a splitting of f similar to the above one:

f=fi+ fo, with fi(z) = {f(x)’ @I =824 fy = F = fi. Then My < | fallie < % It

0, i [f(x)] <t/2
t

follows that M f(x) >t = Mfi(x) > 3 Therefore

by 200

Lo MF() > 1) < (s MAG) > £y < 200l (5.5)
using c¢). We find that
1M1 = p [ 07 M) > eHae < [ 072l 59

0 0
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If F'is the distribution function of f, then we have

t_ .t
il = [ s ln@)] > sYids = P + [ Flsjas. 5.7
0 t/2
Thus
/tp2]|f1HL1dt = §/tp1F(§)dt + /tp2 / F(s)dsdt = Cp/tplF(t)dt =C|flI%ss  (5.8)
0 0 0 t/2 0
by Fubini’s theorem. O
2r—1
The constant in the last line of computations equals + ( 0" We obtain the following
p pp —

C
Corollary 4. For 1 < p <2 we have |Mf]|r» < —1||f||Lp for some constant C' depending only
p p—

on N.

Remark 3. The mazimal function is never in L' (except when f =0). Indeed, if f # 0, there is
C

some R >0 s. t. / |f| > 0. Then, for|z| > R, we have M f(z) > ———— lf| > —=

| B(z, 2|z|)] ||
B(0,R) B(0,R)
and thus M f & L.
Remark 4. By the above remark, given f € L' s. t. f # 0, the best we can hope is that
1
Mf € L} ,. However, this may not be true. Indeed, let f: R — R, f(x) = Iz X[0,1/2]- Then
xln®x

loc*

, so that Mf & L}

loc*

f e L. However, for x € (0,1/2), Mf(z) > é/ﬂt)dt - x|111x!
0

5.2 Lebesgue’s differentiation theorem

Theorem 5. (Lebesgue) If f € L}oc’ then for a.e. © € RY we have
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}}ir(l)\Ba;T / 1y J(@).

Proof. We start by recalling the following simple measure theoretic

Lemma 3. (Borel-Cantelli) Let (A,) be a sequence of measurable sets such that Z |A,| < oco.
Then |limA,| = 0, where imA,, = ﬂ U A,
n m>n

1
et flz,r) = —— y)dy. e conclusion ol the theorem being local, 1t sullices to
Let f f(y)dy. Th lusion of the th being local, it suffi
T

|B(z,7)
B(x,r)
prove it with f replaced by f¢ for any compactly supported smooth function ¢. We may thus

assume that f € L'. Let n > 1 and let f, be a smooth compactly supported function such

1
that ||f — fullzr < o Let also g, = f — f,. Since f, is uniformly continuous, there is some

1
8, such that |f,(z,7) — fu(x)| < = for r < 6, and x € RY. Thus, if for some r < §, we have
n
2 1 1
|f(z,r) — f(x)| > —, then we must have |g,(z,7) — g.(z)| > —, so that either |g,(x)| > o O
n n n
1 1
lgn(x, )| > o In the latter case, we have Mg, (z) > o Therefore
n n

(2 [f(z,r) — f(2)] > % for some < 8, } C Ay = {2 |gn(z)| > % or Mgn(z) > %}. (5.9)

C o
By the maximal and Chebysev’s inequalities, we find that |A,,| < 2—:} If & limA,,, then clearly

hII(l) f(z,r) = f(x). The theorem follows from the above lemma, since Z 2% < 00. O

n

The same argument yields the following variants of the differentiation theorem:

Theorem 6. If f € L}OC, then for a.e. x € RN we have

1
lim — = f(x). .10
xe@,@\ﬁomm@/f(y)y f(x) (5.10)

Here, we may choose the @’s to be balls or cubes (or, more generally, balls for some norm).
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Theorem 7. If f € L%oc’ then for a.e. x € RY we have

dy = 0. 5.11
er\Qy%olQl/’f (@ldy (5:11)

Yet another variant is given by the following

Theorem 8. Let p € S be s. 1. /4,0: 1. If f € L? for a p € [1,00], then f*xp, — f a. e. as
t— 0.
Here, o;(x) =t No(z/t).

Proof. Assume first that p < co. We consider a sequence (f,) C C§° s. t. ||fu — fllzr < 27"
For each n, we have f, x ¢, — f, in §, and thus uniformly. Consequently, there exists a ¢, s. t.
|fo * e — fu] < 1/nif t < t,. Using the inequality |f x ¢;] < CMf (see Corollary 7 below), we
find as above, that

An = Az [frp(x)=f(2)] > 3/n for at < tn} C{z; M(f=fo)(x) > C/n or [fu(x)=f(x)] > 1/n},
(5.12)
and thus |A4,| < CnP27™; in particular, |limsup A, | = 0. As above, if z ¢ limsup 4,,, then we

have f * ¢(z) — f(x) as t — 0.
Let now p = co. Let Abes. t. |A|=0and lim |B|/‘f z)|dy =0 for x ¢ A. We fix

z€B;|B|—0
any © € A; we will prove that the desired conclusion holds for such an x. Since x € A, we have

lim¢tN / |f(y) — f(x)|dy = 0. Let R > 0 be fixed. Since ¢ and f are essentially bounded, we

t—0

B(z,t)

find that
C C
|[frpi(z)—f ()| = 2))erla—y)dy| < o5 | (y)=f@)ldy+5 e((z=y) /1),
B(z,Rt) {lz—y|>Rt}
(5.13)

which implies that

: C

limsup|f +i(e) - fo)| < 55 [ lela-w/ly=C [ el (a9

{le—y|>Rt} {lyI>R}

If we let R — oo in this inequality, we find that PHOI |f(z) = f*p(z) =0. O

We end this section with two simple consequences of the maximal inequalities and of the above
theorem:
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Corollary 5. Let f € L}oc' Then Mf > |f] a.e.

Corollary 6. Let 1 <p < oo. Then ||f|lr < [[Mfllr < C|f|lLe-

5.3 Pointwise inequalities for convolutions

Proposition 6. Let ¢ be such that || < g for some g € L', g radially symmetric and non

increasing with r = |x|. Then
|f ()] < llgll M (). (5.15)

Proof. Since |f x | < |f| * g, it suffices to prove the proposition for |f| and g. We start with a
special case: we assume g to be piecewise constant; the general case will follow by approximation,
using, e.g., the Beppo Levi theorem. We assume thus that there is a sequence of radii 1 < ry < ...
and a sequence of non negative numbers aq, as, ... such that g = Z ar on B(0,7;). Then

k>j

/ |f(z —y)llg(y)ldy = Zaj / |f(z —y)|dy < ZaﬂB(O,m)le(fC) = llgllp M f(z),

B(O7 rj)
(5.16)
which is the desired estimate. O
Let ¢ € S(RY). As a consequence of the above proposition, we derive the following
Corollary 7. We have
| ee(a)| < CMf(z). (5.17)
Here, C' depends only on ¢, not on t or f.
C
Proof. Since ¢ € S, we have |p(z)| < g(z) = TP Then clearly ¢; < g;. Since g is in L'
x
and decreasing with r = |z|, so is g;. Moreover, we have ||g:||r: = ||g||:. The corollary follows

now from the above proposition. O



Chapter 6

The Calderén-Zygmund decomposition

1Al g

If f € L', then the set where f is large is relatively small, i.e. |[{x; |f(z)] > t}] < "

following result provides a nice covering of this set.

Theorem 9. (The Calderén-Zygmund decomposition) Let f € LY(RY) and t > 0. Then
there is a sequence of disjoint cubes (C,) such that:

a) [f(@)| <t a e inRY\ (| JCn);

1
|l

b) for each n we have C~t < / |f(z)|dx < Ct;
Ch

Cllf |l
C)Z!On\gw.

Here, C' depends only on the space dimension /N, not on f or t.

Proof. The construction looks like the Whitney decomposition. Fix some [ > 0 such that IV >

Hf“Ll. We cover RY with disjoint cubes of size [. We call F; the family of all these cubes. We

bisect the cubes in F; and call F; the family of cubes obtained in this way. We keep bisecting
and obtain in the same way the families F;, j > 2. We start by throwing all the cubes in F;.

1
For j > 2, we keep a cube C in Fj if all its ancestors were thrown and il / |f(z)|dx > t. Let
C

F = (C,) be the family of all kept cubes and A = U Cp. If z ¢ A, then all the cubes containing

x were thrown. Thus |f(z)| <t a.e. in RY \ A, by the Lebesgue differentiation theorem.
Let now C' € F. Then C € F; for some j > 2. The (unique) cube @ in F;_; containing C' was

25
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thrown, so that

& [1lds < & [l = 2 / fla)lde < 2Vt (6.1)

Q
Thus b) holds with C' = 2V,

Finally, ¢) follows from
> / @)z > S (Gl (6.2)
n Cn n

A variant of the above theorem is the following

Theorem 10. Let f € LY(RY) and t > 0. Let (C,,) as above. Then f = g+ Zh”’ where:

a)ge L, |g| <Cta e andg=f in RV \ UC

b) supp h, C Cy;
c) for each n we have /C’ hn(x)dx = 0;

n

1
ho(2)|dz < Ct;
o7 [ Im@las <
C

e) gl + D Mhallr < Clflli-

f(x), ife g A
Proof. Let g(z) = |C_1| / f(y)dy, if z € C, and hy,(x) = f(z) —

1

o /f(y)dy for x € C,. It
n ' Cn

is easy to check that this decomposition has all the desired properties. ]
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Hardy and bounded mean oscillations
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Chapter 7

Substitutes of L!

7.1 The space Llog L

As we have already seen, if f € L', we can expect at best Mf € L] ., but even this could be
wrong if we only assume f € L. We present below a necessary and sufficient condition for having

Mf e L.
A measurable function f belongs to Llog L iff / |fIIn(1 4+ |f|) < co. The space Llog L. is

defined as the set of measurable functions s. t. fijx € Llog L for each compact K.

Theorem 11. Let f € L'. Then Mf € L}, < f € Llog Li,..
Remark 5. Set ®(t) =tIn(l1+1¢), t > 0. If F is the distribution function of f, then / |f|1In(1 +

lf]) = /CD’(t)F(t)dt. It is easy to see that ®'(As) < max{l, A\}®'(s) when A\, s > 0. Thus

[sims ) = [@@Fe/E = [@0oPeas<cs [Ifmal @y

for each X € R. On the other hand, we have |{|f + g| > t}| < [{|f] > t/2} + |{lg| > t/2}]|.
Therefore, if F is the distribution function of f and G the one of g, then we have, with h = f+ g,

/[h!ln(1+|h|) < /@’(t)(F(t/2)+G(t/2))dtS4/|f\1n(1—|—!f|)+4/|g\ln(1+]g]). (7.2)

Thus Llog L is a vector space. Similarly, Llog L. is a vector space.

Proof. ”<=" Assume that f € Llog L;,.. Fix a compact K C RY. We will prove that Mf €
LYK). Let L = {x € RY ; dist(x, K) < 1}. We split f as f = g+ h, where g = fx, h=f —g.
Then Mf < Mg + Mh. We note that Mhjx € L*. Indeed, if z € K and r > 1, then

29
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/ |h| = 0. On the other hand, if r > 1, then / |h| < \B / |h| < C.
B(z,r)
Thus we are bounded to prove that Mg € L'(K). Since g € Llog L, we reduced the initial

problem to the case where f satisfies the stronger assumption f € Llog L.
Let F' be the distribution function of f and let G be the distribution function of M f. Note that

| B(,7)]

o0

2 [e’e)
1M ey = / (o€ K s Mf(z) > t}]dt + / (o€ K s Mf(x) > t}|dt < 2|K]| + / Gb)dr,
0 2 2

(7.3)

and thus it suffices to check that /G t)dt < co. By combining (5.5) and (5.7), we find that, with
2

[e.e]

some universal constant C', we have G(t) < C(F(t/2)+1/t / F(s)ds). Integrating this inequality,

t/2
we obtain

[e.e]

/G t<C 71ns—|—2 ds<c/(I)’(s)F(s)ds:c/|f|ln(1+|f|).

2 0

?=" Assume that Mf € L], andlet K, L be as above. We want to prove that / |fllog(1+]f]) <

o0o. With g = fxx, this is the same as /\g\log(l + |g]) < oo. Since Mg < M f, we reduced

K
the original problem to the case where f, apart from the property Mf € L}, satisfies the
extra assumption supp f C K. (of course, the conclusion will be then apparently stronger :

/ Flog(1 + 1) < o)

Since f € L', that is / F(s)ds < oo, it suffices to prove that, for some ¢, sufficiently large, we

[e.9]

have / (®'(s) — ®'(ty))F(s)ds < oo. The key observation is that the distribution function G of

to

M satisfies /G(t)dt < oo for sufficiently large ty. Indeed, if x ¢ L, then Mf(x) < C (this

to
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is obtained as above, by considering the average of | f| over a ball of radius r and discussing the
cases r < 1 or r > 1). Thus, by taking t, = C, we have

/G(t)dt - / {z € L; Mf(z) > tHdt < |Mg]lp ) < oo (7.4)
C C

Let, for a fixed t > 0, O = {Mf > t}. Note that c¢) of the Hardy-Littlewood-Wiener theorem

implies that O # RY. Let O = U C be a Whitney covering of O. Recall that, if C' € F,
CceF
then there is an x € RNV \ O s. t. dist(z,C) < 31(C), and thus C' C B(x, (3 + v/ N)I(C)). Since

Mf(z) <t, we find that/m < / || < cl(C)Nt, that is / |f| < ctG(t). Note

c B(,(3+VMIU(C)) {(Mf>t}
that ¢ does not depend on ¢. Since {|f| > t} € {Mf > t}, we find that / If] < ctG(t).
{If1>t}
Invoking again (5.7), we obtain
/F(s)ds < tF(t) —I—/F(s)ds = / |f] < atG(t), (7.5)
¢ t {If1>t}

so that

o0 > 7G(t)dt >t 77F(5)/tdsdt =c! 7111(5/0) F(s)ds > d]o(q)’(s) — @'(C))F(s)ds,
C C ot c C 76)

for some constant d. O

7.2 The Hardy space H!

There is a different way to come around the difficulty that M f is never in L!. Maximal functions
are especially interesting because they provide pointwise estimates for convolutions. Instead of
asking M f to be in L', one could ask upper bounds for convolutions convolutions to be in L!. Here

it is how it works. Fix a smooth map ® € S(RY) s. t. /CID # 0. Set, for t > 0, &, = t NO(-/t).
For u € &', let Mgu = sup |u x ®;|. We define, for 1 < p < oo,

t>0

E={ueS; Mgouc LP}. (7.7)
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Note that we may assume, without loss of generality, that (H1) / ® = 1. On the other hand,

Mou = Mg u, since f * (ug); = f * ug. The condition /<I> = 1 reads also ®(0) = 1; replacing,

if necessary, ® by @, for appropriate s, we may assume that (H2) 1/2 < |®(£)| < 3/2 for |¢] < 2.
We will always implicitly assume that the different test functions ®, ¥ we will consider below are
admissible, in the sense that they satisfy (H1) and (H2).

The definition (7.7) brings nothing new when 1 < p < 0.

Proposition 7. For 1 < p < co, we have Hy = LP and |ul|p» ~ ||Moul/zr .

Proof. Recall that, if u € LP, then |ux ®;| < CMu, and thus Mgu € LP. Conversely, assume that
Mgou € LP. Then the family (u * ®;); is bounded in LP and thus contains a sequence (u * ®y)
with ¢, — 0, weakly-* convergent in LP. Since, on the other hand, u x &, — w in & (here, we

use the assumption /CD = 1), we find that u € L. Now, if u € LP, then u* &, — u a. e. and

thus |u| < Mgeu < CMu, which together with the maximal theorem implies the equivalence of
norms. O

We next note some simple properties of H.

Proposition 8. a) u — [[Moul|r1 is a norm on H};
b) Hi C L', with continuous inclusion;
¢) Hy is a Banach space.

Proof. The only property to be checked for a) is that |[Meul|;r =0 = u=0. If | Mosul/;1 =0,
then u * ®; = 0 for each ¢; by taking the limit in S" as ¢t — 0, we find that u = 0.

If u € HL, then the family (u x ®;); is bounded in L' and thus contains a sequence (u * ®;, ) with
t, — 0, weakly-* convergent to some Radon measure p. As above, this implies that v = u, and
thus u is a Radon measure. We will prove that || is absolutely continuous with respect to the

Lebesgue measure. Let ¢ > 0. Then thereisa d > 0s. t. [ |[Mgu| < ¢ whenever A is a Borel

A
set s. t. |A| < 9. If B is a Borel set s. t. |B| < 6, then there is an open set O containing B s. t.

|O] < 6. Then

|1l (B) < |u[(O) = sup{| /90 dul 5 ¢ € Co(0), lo| <1} < /Mcbu <é, (7.8)

since

\/gp dpl :lim|/u*<1>tngo\ < /Mq>u]go| < /M@U. (7.9)
0
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Thus u € L'. Moreover, |u| < Mgu, since the Lebesgue differentiability theorem implies, for a.
e. v € RY, that

[u(=)] _zeB |B|—0 |B| /‘ |_x€Bl |B|— o|B||M’( )< xeBl |B|HO|B| /Méu Mau(z); (7.10)

here, the limit is taken over all the balls. In conclusion, ||u||z1 < |[Meu||z:, which implies b).
In order to prove that H} is a Banach space, it suffices to check that an absolutely convergent

series has a sum in HL. Assume that Z Mo frllzr < 0o. Then Z | fullLr < oo and thus Z I
k

converges in L' to some f. Clearly, Mg(f — an) < Z/\/Lpfn — 0 as k — oo and thus
0

k+1
> fo=finH}. O

There are two problems with the definition of HL. The first one is that this space depends, in
principle, on ®. The second one is that it is not clear at all how to check that a given function
belongs to Hk. A partial answer to the second question will be given in the next chapter. The
answer to the first question is given by the following

Theorem 12. (Fefferman-Stein) Let ®, ¥ be two admissible functions. Then HY = HY, and

[Ma fllrr ~ My fll for each f € L.

In addition, if f € HY, then, for every function 1 € S (admissible or not!) we have sup | f * 1| €
>0

L.

In view of this result, we may define H! = H} for some admissible ®, and endow it with the
norm f — |[Mef][L:.

The proof of the theorem is long and difficult; the remaining part of this chapter is devoted to
it. However, we will first explain how the proof works; this will help understanding the technical
part. Let ® be admissible and let ¢y € S. We have to estimate f * ¢, given the information that

sup |f * ®,| € L'. Tt would be convenient to be able to write ¢» = ® * n; this is impossible in
>0

general (pass to the Fourier transform: we have a trouble if & vanishes at a point where Q[J does
not vanish). However, let us forget this point, for the moment, and assume that ¢» = ® x 7. Then

(@) = | % By ()] < £ / % B0 — )l In(y/0)|dy. (7.11)

Th natural way to estimate the latter integral is the following: we decompose R¥ into slices S,
where |y| ~ Cyt. In these slices, || ~ K,,. Then

s b(@)] <D [ShlE,  sup  [fx @z —y)]. (7.12)

{lz—y|~Cnt}
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Thus, we may estimate |f % ¢;(x)| if we are able to estimate the function g : z —  sup |f %
{lz—y|~Ct}
®,(x — y)|. The difficulty is the hypothesis concerns the function h : z — sup |f * ®;(z)|. We may
>0

relate h to g using Taylor’s formula:
N
ha) < g() + Csup{ Sl % 0(@) (@ —2)| i [e—y| ~ Ct, fx—2| ~ Ot} (7.13)
j=1

We note that 9;(®;) = ¢ '(9;®);. Thus: |f * 1| can be estimated in terms h, while h can be
estimated in terms of of g and |f * (0;P);|; the latter term can be estimated in terms of h. We
expect a chain of inequalities of the form:

/./\/lwfSC’l/hSC’Q/g—i—C’gZ/MajcbfﬁC'g/g+C4/h. (7.14)

This looks like a vicious circle; the trick is to be able to adjust the constants in order to have
Cy < 104, and then we find that (*) /./\/ld,F < C5/h < C’G/g. This is essentially how the

proof works. There is one flaw in passing from (7.14) to (*): it may happen that /h = 00!
The plan of the proof is the following:
(i) we define properly h. We also define a modified h, in order to make sure that / h < oo. This

is done in Section 7.3;

(ii) As already mentioned, we cannot expect to write ¢» = ® % 7. However, a substitute of this
equality in proved in Section 7.4;

(iii) Finally, we prove in Section 7.5 the right substitute of (7.14) and complete the proof of the
Fefferman-Stein theorem.

7.3 More maximal functions

Let f € L' (we will always consider such f’s, in view of the preceding proposition) and let ® € S.
We set
F(x,t) = |f * O¢(z)]
F(z) = Mo f(x) = sup{F(z,t) ; t > 0}
F¥(z) =sup{F(y,t) ; t >0, |z —y| < at} (here, a > 0 is fixed)
M

F;,E,M(x) = Sup{F(yvt)

constants).
If we want to be more precise, we will rather write F®, F*®_ and so on.

-1 -1 .-
ca -yl <t <e here, ¢, M are fixed positive
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The reason we introduce F is clear, once we explained the strategy of the proof. It is less clear
why we introduce F_ ;. These functions play the role of modified A’s: they will prove to be
integrable and we be able to estimate these functions in terms of Mg f. We will next let ¢ — 0.
We note the following elementary properties:

F*<F<Fyift0<a<b

lim. o F; .\ = Fy.

Finally, let, for a, 3 € NV, p, 5 be the semi norm p, s(p) = sup [*0%¢|, which is finite for

p € S. F will denote a finite family of such semi norms.
The main theorem is an immediate consequence of the following

Theorem 13. If ® is admissible, then there is a finite family F independent of Y € S s. t.

/F*“” < Cosup{pa,s() ; Pas € }-}/F*’@'

We end this section with a simple result we will need in the proof of Theorem 13.

Lemma 4. With a constant ¢ depending only on N, we have

/Fl:a,M < C(b/a)N/F;&M, 0<a<b.

Proof. Set, for a > 0, O, = {F;_ ), > a} and define similarly O,. Then x € Oy iff there are y, ¢ s. t.
M

—x| <bt,t <eland F(y,t > a. It follows immediately that = € B(y, bt) C O

and that B(y,at) C O,. Let now K C O, be a fixed compact. Since the balls B(y, bt) cover O,
we may find a finite collection of such balls that cover K. In addition, Vitali’s lemma implies
that we may find a finite collection of such balls, say (B(y;,bt;)), mutually disjoint and s. t.
> |B(yi, bti)| > ¢| K|, where ¢ depends only on N. Since a < b, the corresponding balls (B(y;, at;))
are mutually disjoint and contained in O,. Thus bV YtV > ¢|K]|, while a™ >t < |O,|. We
find that |K| < ¢(b/a)N|O,|; by taking the supremum over K, we find that

{Foens > a}| < c(bfa) " [{Fy . 0 > o}, (7.15)

The conclusion of the lemma follows by integrating the above inequality over o > 0. O]

7.4 'Transition from one admissible function to a rapidly decreasing
function

In this section, we provide the right substitute of the equality ¢ = ® * 7.
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Lemma 5. (Dyadic partition of the unit) There is a partition of the unit 1 = Z Cp in RY s.
k

t.:

a) supp o C B(0,2);

b) supp ¢, C B(0,25 1)\ B(0,281) if k > 1;
c) |0°¢| < Cg (with Cy independent of k).

Proof. Fix a function ¢y € C§° s. t. supp (o C B(0,2) and {y = 1 in B(0,1). Define, for £ > 1,
Go(z) = Co(27%2) — Go(2=%V2). Tt is immediate that the ¢;,’s have all the desired properties. [

Lemma 6. Given a semi norm p, g, there is a finite collection F of semi norms s. t., for each
pES,
Pas(p) < csup{pys(P) 5 pyo € Fl. (7.16)

Proof. We have, for each a, 3,

|2°0%¢()| = (2m) "] /e”f(za)a[(zg)%](g)dg| < esup(1+[E) Y (0)7[(26) 2] < ¢ sup_pys(9),

P~y s EF
for some appropriate family F. O
Corollary 8. For each L > 0, there is some F s. .
o(@)] < c(L+[x)™" sup prs(@), Ve €S (7.17)

Dy, 6E€EF

Remark 6. We may, of course, reverse the roles of ¢ and ¢ in the two above results.

Lemma 7. Let ® be an admissible function. Then we may write each p € S as @ = Z LS
k=0

Here, the functions n*, which depend on ¢, belong to S and the series is convergent in S.

In addition, given M, L > 0, there is a finite family F s. t.

In*(z)] < 27" (1 + |z|) " sup{p,.s(¢) ; prs € F} (7.18)

Here, F and c do not depend on .

Proof. We start by noting that Lemma 6 and Corollary 8 imply that, in order to obtain (7.18), it
suffices to establish, for each p, g, the inequality

-~

Pas(n*) < 27" sup{p,s(2) ; pys € F}, (7.19)

for some family F which not need be the same as in the statement of the above lemma. On the
other hand, we have

070, (6)] = 27MId(27¢)| < e, (7.20)
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and therefore

Zpag(I)Q k% k) <chOW7“. (7.21)

k v<p

Thus, if we prove (7.19), then the series Z Do (Po—r * nF) is convergent. Consequently, the series
k

Z ®y 1 xnF is convergent in S. Taking inverse Fourier transform, we find that Z Py k1 is

convergent in S. In conclusion, it suffices to establish (7.19).
Let 1 = Z (x be a dyadic partition of the unit. Noting that ®,-«(&) = @(2*’“5), we find that
k

=37 G(O)G(O) =D Tpe(€) ‘flff Z Oy ( (7.22)

k=0 k=0

We first note that U* is well-defined. Indeed, ® being admissible, we have 1/2 < |52—\k(€)| <3/2
if £ esupp (. Moreover, (;, being compactly supported, so is ¥*. Finally, ¥* € Cg°, and thus

Uk = pk for some n* € S. It remains to establish (7.19), i. e

Pas(¥*) < 27" sup{p, 5(@) ; pys € F} (7.23)

for some appropriate F . B
Set U =1/ € C*(B(0,2)). Since for £ €supp (j we have 27%¢ € B(0,2), we find, for such ¢,

10°(1/@54)(6)] = 2747w (27%¢)| < ¢5.

Since we also have [0°(;,| < ¢, we have, for k > 1 and ¢ €supp (,

€200 (€)] < ¢ ST < 1+ €)M sup pas(@) < 27 sup_pas(d),

V< Pa,pE€F Pa,sEF

provided we choose JF properly. A similar conclusion holds for & = 0, completing the proof of the
lemma. O

We set Co = {z ; |z|] <2} and, for j e N*, C; = {z; 277! < |z < 27}.
Corollary 9. For each M > 0, we have
/ "] < 2% sup{pa 5(¢) ; Pas € F} (7.24)
Cj

provided F is sufficiently rich.
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Proof. If we take F s. t. (7.18) holds for L = N + M, then

J 1< [ e sup1 4 )Y @) < 27 suplpnale) 5 pas € F). (725)

]
7.5 Proof of Theorem 13
Proof. Step 1. F}"",; controls Fy:%),
Lemma 8. There is a finite family F s. t. if 0 <e <1 and ¢ €S, then
[ Fisu e [ Frtysuntpaste)  pase 7). (7.2

Here, ¢ does not depend on ¢ or €.

Proof. Fix an € > 0. By the transition lemma, we have
|f * pul(2)] < Z/ |f 5 Pomry (2 — y)lInf () |dy = £ Z/ |f 5 Pymre (2 — )0 (y/0)|dy. (7:27)
k k

If 27z —z| <t < e and y € tC; (the sets C; were defined in the preceding section), we find
that |y — z| < 28097227 while 27%t < =1 Thus

(e+27" + ez —y)V

|f * @2_1@,5(2’ - y)| = Fq)(z - Y 2_kt) < (2,kt>M F;é$j+2787]\/[(x)7 (728)
so that ( i ) ' )M
e+ 27"t +¢elz| + 27 .
|f * q)2—kt(z - y)| S (Q,kt)M FQIQ:I—)j+2,E,M($)‘ (729)
We find that
_ (e + 277 + e|z| + £27¢
o)<t NZ A /m il (730

Therefore, for each fixed L > 0 we have, if F is sufficiently rich,

(e+27% +elz| + e27)M _, Lkt
[frofz) <e) (@) Fy o ey (027" sup{pa 5(¢) ; pas € F}. (7.31)
k7j
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If0<e<land 27!z —z| <t <e™!, it is easy to check that

—k [\ M M
(e + 27 + 2| +<27) ! < oM, (732
(2-kt)M (e + 2%t + |z )M
Combining (7.32) and the definition of F}7),, we obtain
Fy, & “ulz) < CZ oMU 2k+]+2 £ M(x>2_L(k+j) sup{pa,5(#) ; Pas € F} (7.33)

Recalling that L is arbitrary, we take L = M + N +1 and find, with C' = sup{pa s(¢) ; Pas € F},
that

/ Fo(r) < o0 Y M-V i) / Fybie gy S cCY 27 MmH9) / Fet < cC / Fly

k,j k.j
(7.34)
O
Step 2. My f controls FifM
Lemma 9. If M > N, then FifM e L'
Proof. We note that |f * ®;| < || f|lz1]|®¢l = < et=. Thus
® tM_N 1
F7y(@) <e  sup <ec sup ———, (7.35)
be y—al<t<e—1 (€ + 1 +ely)M y—al<e—1 (L +[y[)M
and the latter function belongs to L! (it is bounded near the origin and behaves like x| at
infinity). O

Lemma 10. Assume that M > N and that ¢ < 1. Then, with some constant ¢ that may depend

on M, but not on € or f, we have
/ laM < C/Mcbf (7.36)

-1

Proof. For each x, there are t and y s. t. |[x —y| <t <e ! and

tM 3

*, *fb
Fl,eq,)MCC) 2F¢<y’t)(€+t+6|y|)M > 4F15M(x)
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Let 0 be a small constant to be fixed later. We claim that, if § is sufficiently small and F is
sufficiently rich (i. e., as in the preceding step), then

M M

—y| < 6t = |F®(y,t —F®(z,t 5> EPES (@)oY
|Z y| | (yv )(e—l—t+5|y\)M (Za )( +t+€‘2| <c Z 2aM 15M($>
(7.37)
The above implication is an immediate consequence of the following inequalities
M M M
t R — T — (7.38)
(e+t+elyhM (e +t+e|z))M 4(e+t+elyh)M
respectively
tM *,0; <I>
F®(y,t) — F®(z,t 6y Fy 7.39
| (y7 ) (Z’ >’(8+t+€|2’ Z 25M ( )

Inequality (7.38) is elementary and left to the reader (it Works when § < (4/3)YM —1). As for
(7.39), we start by noting that

0,(f « @) = 1« (2,2)), (7.40)
and thus

ly — 2|
¢

|f* Di(y,t) — f*Dy(2,1)] < sup  sup |f * ((0;@),)|(w). (7.41)

1<G<N |w—z| <5t

Assuming, without loss of generality, that 0 < 1, we find that

*a<1> (e +t+elw|)M *aq>
<o E, co £y
Z ZEM |w z|<5t (€+t+€|2| Z ZEM

tM

F2(y,t) — F®(z,t
[F*(y,t) (2 )!(€+t+€|z|

(7.42)
whence (7.39). (We may take ¢ = 2M.)
For each =, one of the two happens:

either ( céZFQ*f]j < Fl*a(bM( ),

W) 83 F2H0 > Jristo)
Let A, respectlvely B, be the set of points s. t. (i), respectively (ii), holds. If x € A, then we have
1
F®(z,t) > ZFl*E@M(x) whenever |z — y| < §t, and thus

,®
Fl*,e,M ({L‘)

N | —

\/M.:pf >\/F<I>Zt Z
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for each such z. Thus

Fl*sq)M( )

| VMaFG) (7.43)

{lz—yl<ot}

Noting that {|z — y| < dt} C {|z — x| < 2t}, we find that, in case (i),

Fl*je,M( ) ’{‘Z—f’ <2t}| / V <I>f <CM \/ f)( ) (744)

{|z—z|<2t}

{lz = yl < ot}|

Therefore,

/Fl*;bM < C/(M(\/J\/l—<1>f))2 < c/Mcpf, (7.45)
A A

by the maximal inequalities. (The above constants may depend on §.)
Concerning the set B, we have

/15M<405/ZF;58]§ 5/ 1a7M' (7.46)

B
We finally fix ¢ sufficiently small in order to have (7.38), (7.39), 06 < 1 and ¢/6 < 1/2. Then
/Ff,fM < %/FlifM + %/Ff,fMa (7.47)
B B A
so that
/ 15M /bef (7.48)
by combining (7.45) and (7.47). O

Step 3. Conclusion
By letting ¢ — 0 in Lemma 10, we find that /Fl*’@ < c//\/lq,f. Next, letting ¢ — 0 in

Lemma 10 yields /F*’w < C/Mq>f SUp{Pa,5(¥) ; Pas € F}. U

Let us note the following immediate consequence of Theorem 13

Corollary 10. Let F be a sufficiently rich family of semi norms. Set
FZ f(x) = sup{|f * oi(z)]; t >0, 9 €S, papslp) <1 for each pos € F}. (7.49)

Then f +— ||F7 |11 is an equivalent norm on Hy.
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Proof. If ® is admissible, then Mg f < c¢F7 f for some c independent of F. On the other hand, the
proof of Theorem 13 implies that ||F7 ]|z < ¢ / Mo f if F is sufficiently rich. Indeed, it suffices

to note that, in inequality (7.26), we may replace 7y, by sup{F;7), 5 pas(p) <1, pas € F}
and still get the inequality

/ SUp{FS %0, 1 pas(9) < 1, pap € F} < C / Fie, (7.50)

provided F is sufficiently rich. We may then follow the proof of the theorem and find that
/ a }—f <C / Masf. ]

We will need later the following simple estimate

Lemma 11. Let ¢ be supported in B(z,r) s. t. /gp # 0. Assume that |0°¢| < Cyr=181, with C

independent of x or r. Let F be a finite family of semi norms. Then

’/fgp‘ < eV F7 f(x). (7.51)

Here, ¢ does not depend on x or r.

Proof. We may assume that © = 0. Let ®(z) = ¢(—rx). Then ® is supported in B(0,1) and it is
immediate that [z*0°®(z)| < Cjs, which implies that we may find a constant ¢ independent of z
or rs. t. pas(c™'®) <1 for each p, 5 € F. Then

[ 16 =11 s 0,01 =1 (000 < oV 110), (7.52)

]
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Atomic decomposition

8.1 Atoms
For the moment, we do not even know if H' contains a non zero function! In this section, we will

give examples of functions in H': the atoms. In the next section, we will show that this example
is "generic”. To motivate the definition of atoms, we start with the following simple

Proposition 9. If f € H*, then /f = 0.

Proof. Argue by contradiction and assume, e. g., that /f = 1. Pick some R > 0 s. t. / f>

B(0,R)

2/3 and / |f] <1/3. Let ® € C° bes. t. ®=11in B(0,1) and 0 < ® < 1. For x € RV s.
RN\B(0,R)
t. |x| > R, let t = |z| + R, so that ¢ ~ |z|. Then
1
Mof@ = frt) 2t [ poe™ [zl )
B(0,R) RN\B(0,R)
and thus Mg f & L. O

Remark 7. H' is a strict subspace of {f € L' ; /f = 0}. To see this, it suffices to modify
1
rln?x
fi(x) — f1(3—x). Then f € L' and /f = 0. Howewver, if we pick ® € C® s. t. 0 < & <1, supp

the example in Remark 4 as follows: set f; : R — R, fi(z) =

X[o,1/2) and let f(x) =

43



44 CHAPTER 8. ATOMIC DECOMPOSITION

® C [0,2] and ® =1 in [0,1], then, for x € [0,1/2] we have

1
Mo f(z /ﬁ M_ﬂl (8.2)

nz|’

and thus Mg f & L.
This suggests that functions in H!, apart from having zero integral, can not be "too large”.

Definition 1. An atom is a function a : RN — R s. t.:
(i) supp a C B, where B is a ball;
(i) la| < |B|™";

(i1i) / a=0.
We may replace balls by cubes, in this definition, since if a is an atom with respect to a ball

B, then cya is an atom with respect to any minimal cube containing B and conversely; here, cy
depends only on N.

Proposition 10. Ifa is an atom, then Mg f € L' and ||[Ma f| 1 < c for some constant depending
only on .

Proof. Since Mg f < cMf < | fl|L=, we have Mg f < ¢|B|~!. Therefore,

/Mq,f < c|B*||B|™! = 2V, (8.3)

here, B* is the ball concentric to B and twice larger.
If « ¢ B*, we use the information (iii) and find that, with R the radius of B, we have

e \—r/ 1o =) = Bu(w)ldy| < |BI 1sup|v<1>t:c—z\/|y|dy 8.0

Taking into account the fact that |z — z| ~ |#| and the inequality |V®(z)| < c|z|~"~!, we obtain

cR
|f * @(2)] < —— T2 and thus Mg f(z) < Integrating the latter inequality, we find that

C
| |N+1

/ Maf < c (8.5)

RN\ B*

and the desired inequality follows from (8.3) and (8.5). O
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Corollary 11. Let f = Z)‘kak’ where each ay is an atom and Z |IAx| < co. Then f € H' and
1fller < ey [l
More generally, we could weaken condition (ii) in the definition of an atom as follows

Definition 2. Let 1 < ¢ < co. A jatom is a function satisfying (i), (iii) and
(ii’) lla]| s < |BJY/o.

Thus, the usual atoms are j atoms.

c
Proposition 11. If a is a jatom, then ||a|y < ¢,. If, in addition, ¢ < 2, then ¢, < —
q J—

Proof. We may assume that ¢ < co. We repeat the reasoning in the preceding proposition. On
the one hand, we have

1/q
[masise [ 1M < c|B*|1-1/q( / IMf!q) <o, (8.6)

B* B*
here, we use Holder’s inequality and the maximal theorem. In addition, we see that ¢, < ¢ ] if
q<2.

When z ¢ B*, we find that
1/q’
c c / c R
Mas(o) < i [y < sl (1) < ks s
B B
here, ¢, remains bounded when ¢ < 2. Thus
/ Mof <c (8.8)
RN\ B*
with ¢ independent of ¢ < 2. We conclude by combining (8.6) and (8.8). O

8.2 Atomic decomposition

The following result tells that the atoms represent ”generic”H! functions.

Theorem 14. (Coifman-Latter) Let f € H'. Then we may write f = Z)\kak, where each ay,
is an atom and Z Akl ~ || f -
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Proof. 1t suffices to write, in the sense of distributions, f = Z)\kak, with Z Akl < el fllnr-

Indeed, if we are able to do this, then on the one hand the series Z Aray is convergent in H!,
thus in D', and therefore its sum has to be f, by uniqueness of the limit. On the other hand, we
always have || Z Ak < CZ | Ak

We fix a large family F of semi norms as in the preceding section. Let F'Z be the corresponding
maximal function, i. e.,

F¥(z) = F7 f(x) = sup{Ma f(2) ; Pas(®) <1,V pag € F}.
Let, for j € Z, O; = {F7 > 27}; clearly, O, is an open set and O;; C O;. In addition, O; # RY,
since F¥ € L. Set f; = Ixo;-
Lemma 12. As j — oo, f; — 0 in L'. Asj — —oo, fj — f — 0 in L*™.

Proof. We have || f;||.: = / |f| — 0 as j — oo, since |O;| — 0 as j — oo. On the other hand,
0j

1fs = Fllae = sup [f] < sup F7 <2’ —0 (8.9)
RN\O); RN\O;

as j — o0. O

Corollary 12. Set g; = fj — fi+1. Then Zgj = f in the distribution sense.

Let (C’,i) be a Whitney covering of O; and let gpi be the corresponding partition of the unit in
O;. Recall that, with 1 < a < b depending only on N, we have

J ; .
(i) C’J * C O, (where C}" is the cube concentric with C} and having a times its size);
(ii) C] ™ ¢ O; (where C™ is the cube concentric with C} and having b times its size);
(iii) at most M cubes C] meet at some point, where M depends only on N;

(iv) supp ¢}, C oy

(v) |0%p4] < cq size(CF) 71

(vi) ¢ > 1/M in Cj.

The last property 1mphes

(vii) /gpk ~ swe(C’,ﬁ).

We have f; = Z f (pi (the series that appears is well-defined, at least in the sense of distribu-
tions, since on each compact there are finitely many non vanishing terms). We define the coefficient

¢}, by the condition /(f — )¢}, = 0. We have f; = Z(f — )¢l + R;, where R; = Z ol
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o0

Lemma 13. We have Z(Rj — Rj11) =0 in the sense of distributions.

—00

Proof. We will see later that the coefficients ¢, satisfy || < ¢27 and that Z 2710;| < oo. Thus,

J
with I the size of C},we have

IR ||z < |67|Z/soj <2 V)N =2 |C]] = 2|0;] = 0 as |j| — oc. (8.10)
K
Since
j=P
1> (Rj— Rig)llw = |Roas = Ryl < e(@7|O-u| + 277 Op i), (8.11)
j=—M
j=P
we find that Z (Rj — Rj11) — 0 in L' as M, P — oo, whence the conclusion. O
j=—M

Corollary 13. We have f = Z [Z(f—ci) Z(f a™h ]H} in the sense of distributions.
—o0 k

l

Using the fact that ¢! = ngjﬂwk since Oj11 C O;), we may further decompose the

general term of the above series as follows

2M=epl=d (=™l = D U=k -D [ -a el ™ - ket (812

k ! k k.l

here, the coefficients C]i’l are chosen s. t. /[(f — ™Myl — ¢ ](,0{“ = 0.

Actually, the last sum in (8.12) vanishes. The reason is that, for fixed [, we have, with ¢ =

i
/Z el = /Z —d Nl = /(f it =0; (8.13)

commuting the series with the integral in the above computations is justified by the fact that,
when [ is fixed, we have only finitely many non vanishing terms.
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Thus f= Y ) b}, where
j=—00 k
b= (f =)ol = Y _I(f — ™)l — dJel™ = folxemos, —del+ > ld olel™ +d,0l .

] I
| . (8.14)
Let C' > 0 be a large constant to be specified later. We set, with ;. the size of C{, A} = C(1)N27
and a, = (\,)~'b], so that

= f: Zx\iai; (8.15)
j=—00 k

this is going to be the atomic decomposition of f. Clearly, the functions a,; satisfy, by construction,
the cancellation property (iii) requlred in the definition of an atom. It remains to establish three
facts: a) that the support of a, is contained in some ball B; b) that |a]| < |B|~" (here, the choice

of the constant C' will count); ¢) that Z M| < C||f|ln:. These information are easily obtained
j?k
by combining the conclusions of the following lemmata.

Lemma 14. There is a constant b > 0 depending only on N s. t. supp b{; C Bi, where Bi 1s the
ball concentric with CY and of radius bl].

Proof. If b]( ) # 0, then either x € supp gok C C’i , or there is some [ s. t. supp gpk intersects
supp @] " and s. t. @) (z) # 0. In the latter case, we have, on the one hand, z € C{™"*. On the
other hand, if y € supp @,N supp /™" C C* N CfH*, then

U < e dist (y, RN\ O;11) < ¢ dist (3, RV \ O;) < ¢y 1. (8.16)
In both cases, we may find b s. t. the conclusion of the lemma holds. O

Lemma 15. We have || < ¢2/, and |C;€l| < ¢27. Here, ¢ depends only on N and F.

Proof. By definition, we have (:/,7C = / fgpi / / gpi. As already noted, we have / gpi ~ (li)N . Let

T € C’J**\(’)J7 thus F7 f(z) < 27, by the definition of O;. We apply Lemma 11 with this 2 and with
r = Cli, for a sufficiently large C'. Using the decay properties of the functions gok in Whitney’s
partition of the unit, we find that

] = \/fsok//gok

< (1) N// ) < C2. (8.17)
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The argument for ¢ ., is similar. Since

i, = / fololt / 1 gt / Aot / (8.18)

il <16+ | [ 1ol [t (.19

the latter term appears only if ckaOJH Z 0. ‘
It is straightforward that |8/B(<pf€90{+1)\ < C(B*)~PI with Cj independent of j, k, I. (It suffices
to rely on the fact that /™" < O if apkgonrl # 0). As above, we find that |c), | < c2/. O

we find that

Lemma 16. With some constant ¢ depending only on N and on the family F of semi norms, we
have |bl| < ¢27 in the support of by..

Proof. In view of the second equality in (8.14), we have
01 < 1 Ixeo, + el + ) (G + I, < ¢ 2 + [ flxemo,., - (8.20)
I
The desired conclusion is obtained by noting that |f| < ¢F7f a. e., and thus |f] < ¢ 27 in
RN\ 01 O

By combining the above results, we find immediately that the ai’s are atoms, provided we chose
C sufficiently large (depending only on N and F).
We may now complete the proof as follows: on the one hand, we have

DTN <D PN = Y|Cl =) 20y (8.21)
gk J.k J

On the other hand,

27
17 fle =/|{Fff >a}lda =) / {EZf > a}|da =) 2710]. (8.22)
—00, 1 —00

If we take F sufficiently rich, we find, by combining (8.21) with (8.22), that
1Fllres ~ IFZ Fll = ¢ >IN (8.23)
[l
Corollary 14. On H!, the quantity
1£Il = inf{z el 3 f = Z Ak, the a)s are atoms}

18 a norm equivalent to the usual ones.
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Chapter 9

The substitute of L°°: BMO

9.1 Definition of BMO

Definition 3. A function f € L, belongs to BMO (=bounded mean oscillation) if
1

1
| fllBro = sup{m / lf — m/ﬂ ; C' cube with sides parallel to the axes} < oco.  (9.1)
c C

Despite the notation, ||-||garo is not a norm, since || |0 = 0 when f is a constant. However,
it is easy to see that, if we identify two functions in BMO when their difference is constant (a.
e.), then || - || pmo is a norm on the quotient space (still denoted BMO).

1
It will be convenient to denote by fo the average of f on C| i. e., fo = m / f
c

Proposition 12. a) BMO is a Banach space.
b) For each cube C and each constant m, we have

Jis-tel<2 [ir-ml 9.2)
C C

c) We may replace cubes by balls; the space remains the same and the norm is replaced by an

equivalent one. Similarly, we may consider cubes in general position.
d) If C C Q are parallel cubes of sizes | < L, then |fc — fo| < c(14+In(L/1))|| fllzmo-
e) If U is a Lipschitz function of Lipschitz constant k, then ||V o fllzmo < 2k||f||Bmo-

Warning: In e), we do not identify two functions if there difference is constant.
Proof. a) Let Z fn be an absolutely convergent series in BMO. Let C be a cube. The series
Z(f”\c — (fn)c) is absolutely convergent (thus convergent) in L'. Set f¢ = Z(fmc — (fn)e)-

51
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Then /fc =0 and
C

%l / ) < Zﬁ / = (F)e)] < S [ ullsaro: (9.3)

We now cover RY with an increasing sequence of cubes (Cy). We set f(z) = f%(z) — (f%)q, if
x € Ck. We claim that the definition is correct (in the sense that it does not depend on the choice
of C%). This follows immediately from the equality

(fC)C'o - Z[fmc — (fa)col, (9.4)
valid whenever Cy C C.
b) We have
Clim = fel =1 [m= ) < [ 1m =4 (9.5)
C C
and thus

C/If—fc\Sc/lf—mHC/\m—fc\S?C/\m—f\- (9.6)

c) We prove the assertion concerning balls. The proof of the other statement is analog. Let B be
a ball and let C, @ be cubes s. t. C' is inscribed in B and B is inscribed in (). Then

1 2 9 .
@B/u—ms@B/U—MSEQ/U—MS@Q/u_fd 07

and similarly

1 2 9 .
@C/If—fclSmc/lf—fBlS@B/U—fB\SEB/If—fBI, 0.9

so that the supremum over the balls and the supremum over the cubes are equivalent quantities.

d) We have

1 1 1
fo— fol = ml!(f o)l < @C/u ol < WQ/ 1 fol < (LN flmao (9.9)

which implies the desired estimate when L/l < 2. If L/l > 2, let j € N* be s. t. L € [27],2/1])
and consider a sequence Cy,...,Cj1; of cubes s. t. Cy = C, Cj1; = Q and the size of each cube
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is at most the double of the size of its predecessor. Then

l=j
[fo = Tol < Ife = fau| < cill flsvo < ¢ W(L/Df ] sao- (9.10)
=0
e) We have

|C|/|\Ifo (vo fc|<|C|/\‘I’ - \I'(fc!_|0|/!f fel < 2| fllswo.  (9.11)

]

Remark 8. The space BMO is not trivial: L™ functions are in BMO and ||f||syo < 2||f]|p<-
However, BMO is not reduced to L™ functions. Here is an example: let f : RY — R, f(z) = In|z|.
Then f € BMO. Indeed, let B be a ball of radius R and center x. If |x| < 2R, then there is a
ball B* of radius p ~ R, containing B and centered at the origin. Then

1 9 9 .
EB/|f—fB|§|—B|B/|f—lnﬂ‘SEB[V—IHP\S@BZU—IDM. (9.12)

Now it is easy to see that the last integral is finite and independent of p.

Assume now that |x| > 2R. Then |In|y| — In|z|| < ¢ whenever y,z € B, and therefore

||
cR

We emphasize the followmg consequence of our above computation

1
lim In|y| — In|y|p,r)ldy =0, ¥V R>0. 9.14
e o0 | B(z, R)| (/) | In [y] |y|B( ,R)| Y ( )
B(z,R

9.2 H! and BMO

Theorem 15. (Fefferman) BMO is the dual of H' in the following sense:
a)if f € BMO, then the functional T(g) = /fg, initially defined on the set of finite combinations

of atoms, satisfies |T(g)| < c||fllBmollgllx: and thus gives raise (by density) to a unique element
of (HY)* of norm < c|| f| Buo-

b) Conversely, let T € (H')*. Then there is some f € BMO s. t. T(g /fg whenever g s a

finite combination of atoms. In addition, || f||zro < c||T|| -
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1

Remark 9. Since atoms are bounded and compactly supported, /fg makes sense when f € L.

and g is an atom. Moreover, the definition is correct when f € BMO, in the sense that if we
replace f by f + const, then the value of the integral does not change, since atoms have zero
integral.

Proof. a) Assume first that f is bounded. Then T'(g) = / fg is well-defined and continuous in

H!, since the inclusion H! C L! is continuous. If g = Z Ax@y is an atomic decomposition of g

s. t. Z Akl < ¢|lgll#: and each ay is supported in some By, then

1
(o) < 3l /fakl =3 /(f ATEDS wﬁ/u ~ fal < el flmollglhe
By,

(9.15)
and a) follows.

n, if f(x)>n
When f is arbitrary, we apply (9.15) to the truncated function f,(x) = ¢ f(x), if [f(z) <n .

—n, if f(z) < —n
Noting that f,, = ¥, o f, where ¥, is Lipschitz of Lipschitz constant 1, we find that

| / fugl < ellflsarollgle. (9.16)

When g is a finite combination of atoms, we have |f,g| < |fg| € L' and f,g — fg a. e. Thus

| / fg| = lim| / fugl < el fllsarollgle, (9.17)

by dominated convergence. This implies a) in full generality.
b) Conversely, let T € (H')*. Let B be a ball and let X5 be the space of L? functions supported in

B having zero integral. If g € Xp, then g is a satom. Thus ||g|lsa < ¢llg||z2|B|"2. Tt

1
lgllz2] B|'/?
follows that T restricted to Xp defines a linear continuous functional of norm < ¢||T'|||B|'/2. Thus,

there is some f2 € Xgs. t. |[fB]|z2 < ¢||T|||B|*/? and T(g) = /fBg when g € Xp. We now

cover RY with an increasing sequence of balls B,, and set f(x) = f5 (z) — (fP")p, if x € B,. This
definition is correct. Indeed, if j > k, then fZ* and féi — (fP9)p, yield the same functional Tixy
and thus must coincide. Therefore, fPi and fP* differ only by a constant in B; (and thus in Bj),

which implies that the definition of f is correct. Another obvious consequence of our argument is
that, on each ball B, fip and f? differ with a constant. In other words, f? = f — f5.
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We claim that, when g is a finite combination of atoms, we have T'(g) = / fg. Indeed, there is

some n s. t. supp g C B,,. Since g € Xp, for such n, we find that T'(g) = /fB"g = /fg

It remains to prove that f € BMO and that || f||gpo < ¢||T||(z1)-. This follows from the fact
that, if B is any ball, then we have
1 1

1

V1Bl

1171 < 15 e < ellT- (9.18)

]

9.3 BMO functions are almost bounded

Strictly speaking, the assertion in the title is not even nearly true, as shows the example z — In |z|.
However, we will see that, on compacts, BMO functions are in each L”, p < oo, and even better.

Proposition 13. Let f € BMO. Then, for each ball B, f € LP(B) and ||f — f8ll1r5) <
cp| BIV?|| fllBmo- In addition, we have c, < cp when p > 2.

Proof. We copy the proof of b) in the preceding theorem. When p = 1, the conclusion is trivial, so
that we may assume that 1 < p < co. We may also assume that fz = 0. Let ¢ be the conjugate
exponent of p. It is straightforward that, if ¢ € L9(B), then ||g — gs|lLe) < 2||9|Las)- On

the other hand, if ¢ € L9(B) and /g = 0, then g is a jatom and thus ||g|l <

[BI'=/4lg]l e

Cy|BI* 4|\ gl|za. Here, C, satisfies C, < Ll < ¢p when ¢ < 2 (and thus p > 2). Thus
q J—

| fllr By = SUP{/ fg—98) ;5 l9llam) < 1} < 2¢Cyl| fllamol Bl = ¢l fll saro| BIVP. (9.19)
]

Theorem 16. (John-Nirenberg) There are constants ci,co >0 s. ¢
{z € B|f =[5l > a}| < a1 Blexp(—c2a/|| f|| aro)- (9.20)

Proof. 1t is immediate that, if the conclusion holds for f, it also holds for a multiple of f. We
may therefore assume that || f||gao = 1. It is also clear that, if the conclusion holds for o > 2ce,
where ¢ is the constant in the preceding proposition, then we may adjust the constants s. t. (9.20)
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holds for each . We may therefore assume that o > 2ce. We assume also that fgp = 0. Let

p:g > 2. Then
ce

e ’|B
re B |f)> o) < L ¢ (@)1B]

o = |B|exp(—ca/e). (9.21)

oP
]

Theorem 17. (John-Nirenberg) There are constants C;k > 0 s. t. if f € BMO and ||f|spo <

1, then

ﬁ / exp(CIf — fal) < k. (9.22)

B

Remark 10. The normalization condition || f||papo < 1 is necessary. Indeed, if exp f € L', there
is no reason to have exp(2f) € L*. On the other hand, the constant C' cannot be arbitrary large,
as shown by the example x — In|z|.

Proof. We may assume that fg = 0. Then

7 [ e - —1+@Zcp||f|| T S iy )

provided C' < (ce)™!, as it is easily seen using Stirling’s formula. O



Chapter 10

LP regularity for the Laplace operator

10.1 Preliminaries

Let E be the fundamental solution of the Laplace operator in RN, N > 2,

1
— In|z|, if N =2
2

E(z) =< 4" 1 I f e CF°, then u = E * f is a (classical) solution
_ N >3
(N — 2[5~ [a]2
of the equation (*) Au = f. If f € L§ for some 1 < p < 0o, we may still define u = E * f and we
then have u € LV . Indeed, if K is a compact and L = supp f, let ® € C§° be s. t. ® =1 in the

loc*

compact K — L. Then, in K, we have E x f = (PFE) = f, and thus

1E * flle) < (PE) * flloe < [|PE[ ][ flle < Cr ]l fllze, (10.1)

using Young’s inequality and the fact that F € L;, .

In addition, u still satisfies (*), this time in the distribution sense. The reason is that we may
approximate f with a sequence (f,) C C5°s. t. f,, — fin L' and supp f,, C L', with L’ a compact
independent of n. Then (10.1) with p = 1 and L replaced by L’ implies that F * f, — E * f in
L}, and thus in D’. Since we also have A(E x f,,) = f,, — f in D', we find that A(E * f) = f.
Let now 1 < j,k < N and consider the operator T =T, : L — D', Tf = 0;0t(E * f). Note that
the definition does not depend on p, in the sense that, if f € Lj N LE, then T,f = T,f.

We start by noting some simple properties of T that will be needed in the next section.

Lemma 17. If f € L3, then

Tf=F"" (% ) (10.2)

Consequently, T has a continuous extension to L?, given by the r. h. s. of (10.2).

57
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In addition, T is self-adjoint in L?, i. e
/ng:/fT_g, V f,g€ L’ (10.3)

Proof. The r. h. s. of (10.2) is continuous from L? into L? (and thus into D’), by Plancherel’s
theorem. On the other hand, if L is a fixed compact, the 1. h. s. is continuous from L? (the space
of L? functions supported in L) into D’. Therefore, it suffices to prove the equahty When fe Cge.

Since (1 + |z|?)™VE € L', we have E € &', and thus 9,0, F € S’. Therefore, Tt =20, .OLEf, and

%. We write F/ = E1 + EQ, where El = q)E, E2 = (1 — q))E,

® € Cf° and ® = 1 near the origin. Then m = 8]-/8;E1 —|—aj/a;E2 € C>®+ L?, since 0;0,F € &,
while 9;01,F, € L. On the other hand, AJ;0E = 9;0,0, and thus [£|?0;00E = &;&. Thus

8J/-8k\E' = i_% + Z 20%0. The coefficients ¢, must be zero, since 8 OE € C*® + L?, whence the
|| <2

first conclusion of the lemma.
As for (10.3), it follows from Plancherel’s theorem:

[rrg=n [T75=en ™ fgf’“ /fifk en) N [FTy= [ 173

it suffices to prove that 878? =

(10.4)
D
1 dir Nuzj
Lemma 18. Assume that f € Ly and let x & supp f. Then, with K (z) = 5T, (|xj‘f\/_ mﬁéf’;),

we have
= /K(a? —y)f(y)dy. (10.5)
In addition, K satisfies

C
Ko=)~ K@< ol ol <120, (106)

Proof. If L = supp f and O is a relatively compact open set s. t. O N L = (), then the (pointwise)
derivatives of F(z — y) f(y) with respect to z satisfy

02(E(z = )f ()] < cal f() €LY, 2 €0, (10.7)

and thus E x f € C*(0O). Moreover, we may differentiate twice under the integral sign in the
formula of £ % f to obtain, in O, both the pointwise and the distributional derivative 0;0;(E * f)

through the formula 0,0, (E * f / 0;0:E(x — y) f(y)dy. Here, 0;0,F stands for the pointwise
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derivative. Finally, we have 0;0,F = K, whence the first conclusion.
To prove the inequality (10.6), we note that |[DK(z)] < C|z|~™~1 and thus, for z,y s. t. |y| <
1/2|z|, we have

|—N—1 < C’|y|

|K(x —y)— K(z)| <|y| sup |DK(z)]<Clyl sup |z = gV

z€[z—y,7] z€[z—y,2]

(10.8)

]

Lemma 19. Let ® € C§°. Then
a) (T®), =T, for each t > 0.
b) TP € L.

c) D(T®) € L.

d) If ly| < 1/2|z|, then |T®(x —y) — TP (z)| <

P’roof a) Actually, this holds under the sole assumption that ® € L?. It suffices to check that
(TCID)t = T®,. This equality follows from

T0),(¢) = @D (t6) = Lhbte) = 55T, (6) = Ty ). (10.9)

1e? 17
b) Since |Td| < \<I>\ we find that 7® € L} L' and thus T® € L.

¢) Similarly, D(TCID) — T, and thus D(T@) € L', which implies that D(T'®) € L*>.
d) Let R > 0 bes. t. & = 0 outside B(0, R). If |z| < 3R, then the conclusion follows from
b).

Assume |z| > 3R. Then both = and x — y are outside the support of ®, which implies that
TO(x —y) —TP(x) = / (K(zx —y—2)— K(x — 2))®(z)dz. Therefore,
B(0,R)

T®(x —y) — TP(x)| §Clslli%|K(x—y—z)—K(x—z)| <

(10.10)

here, we rely on the inequality (10.6) and we take into account the fact that |x —y —z| ~ | — 2| ~
|| O

In the next section, we will prove the following

Theorem 18. a) (Calderén-Zygmund) For p = 1, the operator T, initially defined on L} ., has
a continuous extension from L' into Ll .
b) (Fefferman-Stein) When restricted to H', the extension of T to L' maps continuously H!

into H".

locy
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p

oes Pas a

¢) (Calderén-Zygmund) For 1 < p < oo, the operator T, initially defined on L
continuous extension from LP into LP.
d) (Spanne-Peetre-Stein) T" maps BMOy, continuously into BMO and thus L® continuously

into BMO.

The most widely used form of the above result sais that a solution u of Au = f ”gains two
derivatives with respect to f”:

Corollary 15. Assume that Au = f in the distribution sense.
a) If f € LV for some 1 < p < oo, then u € WP
b) If f € H!, then u € w2t

loc

Proof. Let K be a compact in RY and let ® € C5° be s. t. ® = 1 in an open neighborhood O
of K. Set g = ®f € Lf and let v = E % g, which satisfies Av = f in O. Then A(u—v) =0 in
O, and thus u —v € C*°(0), by Weyl’s lemma. Now v € L} | since g € Lf, and the second order

derivatives of v are in LP if f € LI and 1 < p < oo, respectively in L' if f € H'. In addition,
it is easy to see that the distributional first order derivatives of E % f are computed according to

the formula 0;(E * g)(z) = / (0w, E)(x —y) f(y)dy, where 0, E stands for the pointwise derivative

(this is obtained using an integration by parts when f € Cg°; the general case is obtained by
approximation, with the help of Young’s inequality). Since d,,FE € Lj,, and (in all the cases)

g € Lb, we find that d;v € L . Therefore, u € W, O

loc *

The above results are optimal, in the following sense:
Proposition 14. T' does not map L} into L' and does not map L into L.

Proof. We fix a compact L in RY. We already noted that 7" maps continuously L% into D’. We
claim that, if T : L¥ — LP, then T has to be continuous. Indeed, let f, — f in L7 be s. t.
Tf, — ¢gin LP. Since T'f, — Tf in D', we find that Tf = ¢, and thus T has closed graph.
Therefore, T' is continuous.

Let now p = 1. We argue by contradiction. Let L be a ball containing the origin. We consider a
sequence (f,) C C° s. t. ||fullzr < C, supp f, C L and f, — ¢ in D’ and set u,, = F * f,,. Then
u, — E in D and ||D?u,||;r < C. On the other hand, Du, = (DFE) * f, (where DE € L; . is
the pointwise derivative of F), and thus | Du,||z1z) < C. Consequently, the sequence (Duy,) is
bounded in W' (L). The Sobolev embeddings imply that (Du,,) is bounded also in LYW= (L).
Since Du,, — DE in D', we find that DE € LYW=1(L); thus |[DE[Y/N=1) is integrable near
the origin. However, if we compute the (pointwise or distributional) gradient DE, we see that
|DE(z)| ~ |z|~™"=1, a contradiction.

We next consider the case p = co. Argue again by contradiction. Recall that there is a function
u:RY - R ugC? s t. f=Au (computed in the distributional sense) be continuous (example
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due to Weierstrass). We may assume, e. g., that u ¢ C?(B(0,1)). Let g = ®f, where ® € C5°,
® =11in B(0,1), supp ® C B(0,2). Then g € L, and thus T'f € L> (for all j, k). Let (g,) C C§°
be s. t. g, — ¢ uniformly, supp g, C B(0,2). Then Tg, — T'¢g uniformly. Since Tg, € C, this
implies that Tg is continuous. Thus E x g € C?%. Since A(E x g) = Au in B(0,1), Weyl’s lemma
implies that v € C*(B(0,1)), a contradiction. O

10.2 Proof of Theorem 18

Proof. The plan of the proof is the following: a) we prove that 7" maps L' into L} ; this will rely on
the Calderén-Zygmund decomposition. b) Marcinkiewicz’ interpolation theorem, combined with
the continuity of 7' from L? into L?, will imply the result when 1 < p < 2. ¢) For H!, the result is
obtained via the atomic decomposition. d) The remaining cases, i. e. 2 < p < oo or BM O, will
be obtained by duality; we will exploit the fact that T is a symmetric operator.

Step 1. Continuity from L' into L.
It suffices to prove the following estimate

C
HITf > 8} < Zlfller, ¥E>0.% feLlnL (10.11)

Indeed, assume (10.11) proved, for the moment. Let f € L' and consider a sequence (f,) C L'NL?
s. t. f, — fin L'. Then (10.11) applied to f,, — f., implies that [{|Tf, —T f,n| > t}| — 0 when ¢ is
fixed and m,n — 0o.Thus (T'f,) is a Cauchy sequence in measure, and thus it converges in measure
to some g. In particular, this implies that g does not depend on the sequence (f,), that g = T'f
if f happens to be in L' N L? and that f — g is linear. Possibly after passing to a subsequence

(fn.), we have T'f,, — g a. e., and thus [{|g| > t}| < liminfy [{|Tf..| > t}| < %||f||L1 Thus,

f + g is the desired extension of T'. (We needed this argument since L} is not a normed space.)
We now return to the proof of (10.11). Let ¢ > 0. We write, as in Theorem 10 (with « replaced by

t), a function f € L'NL? as f = g—l—Zhn. We first note that g € L?, since g € L' and |g| < Ct.
We claim that the series Z h,, is convergent in L?. Noting that the functions h, are mutually
orthogonal in L?) it suffices to prove that Z |hall72 < oo. Since ||hullrz = |f = fellr2c,) <

| Il z2(c,)» we find that Z 32 < Z ||f||%2(cn) < |If||32, whence the claim.
This allows us to write T'f = T'(g + Z hy)=Tg+ Z Th,,. On the one hand, we have

TSI > 31 < HITgl > /24 + {IT Y hal > /2. (10.12)

Since /|g|2 < C’t/ lg| < Ct||f]l: (by the properties of the Calderén-Zygmund decomposition),
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we obtain

C C
{ITgl > t/2}] < WHQH%Z < Uz (10.13)

On the other hand, let, for each n, C} be the cube concentric with C), and twice bigger than it.
Then, with A = RY \ | JC*, we have

X C
{7 kol > t/2} < IUCH + Kz € A5 D [Thal > /24 < C Y |Cal + — 3 I Thal|ra)-

(10.14)
We denote by 7, the center of C,, and by [, its size. For x € A, we have
Thole) = [ K=oy = [IK@—y) - K@ -l (1013
and thus o .
Tho(o)] € s [ 1= Tollhaldy < == (10.16)

Integrating the above inequality and summing over n, we find that

S W halliscn < €3 Ihallis < ClLfllr, (10.17)

by the properties of the Calderén-Zygmund decomposition.
We conclude the first step by combining (10.12), (10.13), (10.14), (10.17) and the fact that

C
D 1Ca < I f

Step 2. Continuity in LP, 1 < p < 00

We know that T, when defined in L' N L?] is continuous from L! into L} and from L? into L.
Marcinkiewicz’ interpolation theorem implies that T' has a unique extension continuous from L?
into L? when 1 < p < 2. Let now 2 < p < oo. Part ¢) of the theorem follows if we prove that
ITfllzr < C|f||lz» whenever f € LP N L?. For such an f, we have, with ¢ < 2 the conjugate
exponent of p,

ITfle = sup /Tf§= sup /Tfy: sup / T3 < C|lf]lr

geLa ; |lgllpa<l geLINL? ; ||gllpa<1 geLINL? ; ||gllpa<1
(10.18)

here, we use the continuity of 7" in L9.

Step 3. Continuity in H*
In view of the properties of the atomic decomposition, it suffices to prove, with a constant C
independent of a, the estimate

|Tal|lyr < C, V atom a. (10.19)
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Let a be an atom supported in B = B(Z, R). Let ® € C§° bes. t. /<I> = 1 and supp ¢ C B(0,1).
For each x, we have Mga(x) < CMa(x), and thus

/ Mga < C / Ma < ||Mal| 2| B(T, 2R)|V? < Cllal| 2| B|Y* < C. (10.20)

B(%,2R) B(72R)

We consider now an x outside B(Z,2R) and estimate ®; x (T'a)(x). We have (we take a, ® real,
here)

bo(Ta)(e) = [ la-yTaly)dy = [(@0)a-paldy = [(T(s—y)~(TO)(a-D)aly)dy.
B

(10.21)

We next note that, when y € B, we have |z — y| < 1/2|z — Z|. We intend to make use of the

decay properties of T'®. To this purpose, we distinguish two possibilities concerning the size of ¢:

(i) t > |z — 7| and (ii) t < |z —Z|. In case (i), we use the fact that T'® is Lipschitz, and find that

(T®)e(x —y) = (TP)(x —7)| < Ct My — 7, (10.22)
and thus o Cl I
B0+ (Ta)(w)] < g7 [ Iy =llat)ldy < i < (10.23)
B
In case (ii), we make use of Lemma 19 d), and obtain
_ C _
(T®)i(x —y) = (T®)i(x —T)| < mw -7, (10.24)
which gives
C _ Cl
| (Ta) ()] < el ly — Zl|a(y)|dy < [y (10.25)
B
(10.23) combined with (10.25) yields
Cl _

Integration of (10.26) over RY \ B(Z,2R) combined with (10.20) gives the needed conclusion
[Maalrr < C.

Step 4. Continuity of T"in BM Oy
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We note that BMOy C L2, by the John-Nirenberg inequalities. We also note that the vector space
Y spanned by the atoms is contained in L?. Thus, for f € BMO,, we have

ITf om0 ~  sup / L Ea— / § T9 < Cllfllsaro: (10.27)
gev,Hg”ngl g€V,Hg||H1§1

here, we used the duality between H! and BMO, the density of V in H! and the continuity of T'
from H' into H*. O

10.3 An equation involving the jacobian

We consider, in R?, the following equation that appears in Geometry
Au =det(Df,Dg), f g€ H'(R?). (10.28)

Theorem 19. a) (Wente) Equation (10.28) has one and only one distribution solution u € C(R?)
vanishing at infinity, i. e., s. t. lim u(x) = 0. In addition, Du € L* and

|| —o00
[Dul[r2 < CIDfllz2]| Dyl| 2 (10.29)
b) (Coifman-Lions-Meyer-Semmes) In addition, we have D*u € H'.
Proof. The main argument in the proof is that
det(Df,Dg) € H' and || det(Df, Dg)la < CIIDS|i2l|Dyllse. (10.30)

Assuming (10.30) proved for the moment, we reason as follows: let h = det(Df, Dg). Consider
sequences (fn), (gn) C C° s. t. fo — f, go — g in H'. Then h, = det(Df,, Dg,) — h in H!, by
(10.30). Let u, = E * h,,, which is a solution of Au, = h,. We claim that u, € Cy (the space of
continuous functions vanishing at infinity) and that (uy,) is a Cauchy sequence for the sup norm.

Indeed, let, for fixed n, R =R, > 0 be s. t. h,(y) =0if |y| > R. Then
un(o)] = | [ I = ylhal)y] = —|/1n|x—y| (0] Domlha()dyl,  (10.31)
and thus
un(z)| < Cy / | [z —y|—(In|-|)p@,rldy = C, / |[Iny —(In|+[)B(.r)ldy — 0 as [x| — oco.
B(0,R) B(=z,R)

(10.32)
On the other hand, we have In € BMO and thus, using the H'-BMO duality,

|t () = um (2)] = %| /ln|y|(hn(x—y)—hm(w—y))dy| < Cl[(hn—hm)(@=")lr2 = Cllhn—bunll31,
(10.33)
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since the H! norm is translation invariant. (Similarly, we have |u,| < C/||hy||2:1.)

To summarize, the sequence (u,) is Cauchy in C,, and thus converges to some u € C,. This u is
a distribution solution of (10.28). It is also the only solution of (10.28) in C, for if v is another
solution, their difference w is, by Weyl’s lemma, a harmonic function vanishing at infinity, thus
constant, by the maximum principle.

We now turn to the proof of (10.29) and b) (assuming, again, (10.30) already proved). Note that
b), at least when f, g € C§°, follows by combining (10.30) and the Fefferman-Stein regularity result
concerning the equation Au = f with f € H!'. The general case is obtained by approximation,
as above. Similarly, it suffices to establish (10.29) when f, g € C§°. Formally, estimate (10.29) is
clear, as shown by the following (wrong, in principle) computation:

/!DUI2 = —/uAu = —/uh < lullz= bl < Cllullz= Rl < CIDfIZ:l1Dgllz2.  (10.34)

The point is that this computation can be transformed into a rigorous one as follows: set F'(r) =
1 1

o / |u|?dl. Then lim F(r) = 0 and F'(r) = — / u - updl. Thus, along a subsequence
r r—o0 r

|z|=r |z|=r
r, — 00, we must have r,F”(r,) — 0 (argue by contradiction; otherwise, we have F(r) > C'lnr
for large ). Then, for large n, we have Au = 0 outside B(0,r,) and thus

/]Du\2 = lim / | Dul? :117rln{/ U Uy —/uAu} = —/uAu < C||Df|321|Dgl|72. (10.35)
B(Oﬂ’n) ‘xlz’/‘

The only part of the proof left open is

Proof of (10.30)
In view of the conclusion we want to obtain, we may assume that f,g € Cg°. Let ® € C5° be

supported in B(0,1) and s. t. /<I> = 1. Then, with h = det(Df, Dg), we have

Boxhi) = [ he - y)dy =" [ fo =) det(D))), Dyle ~ p)dy.  (1036)

as shown by an integration by parts. Next, if &k, € C§°, then /det(Dk:,Dl) = 0 (again, this
follows by an integration by parts), and thus

B () = 7 [ 170 = 9) = Foeol det((DD)) ). Dot — )iy (10.37)

Using the Holder inequality and the inequality |(D®),] < Ct~? together with the fact that ®,



66 CHAPTER 10. L” REGULARITY FOR THE LAPLACE OPERATOR

vanishes outside B(0,t), we find that

|y h(z)| < t7° ( / |f = fBw] ) (/|Dg\4/3) 4‘ (10.38)
B(z,t) B(z,t)

Applying Lemma 20 below to the function given by v(y) = f(x — ty), we find that

If = fenllaBay < ClDfllLs By (10.39)
and thus (10.38) yields
1 3/4 . 3/4
ec o < (i [ 0n) (g [ pa) (1040)
B(z,t) B(zt)

Recalling the definition of the maximal function, we obtain
Mah(x) < C(MIDFIY3(x)* (M| Dg|*? (), (10.41)

and the Cauchy-Schwarz inequality implies that

1/2 1/2
[ Mah]l 1 < c( / (MIDf|4/3)3/2) ( / <M1Dg\4/3>3/2) , (10.42)
which may be rewritten as

3/4 3/4 3/4 3/4
IMahlr < ClIMID Y320, I MIDg[ V2|20, < CIND Y220 1D FIYR30, = O D12 r(\DgHL;;
10.43
that is, ||h|lr < C||Df]lr2||Dyg|| 2, as claimed at the beginning of the proof. O

We next recall the following Sobolev embedding and the corresponding Poincaré inequality
Lemma 20. W4/3(R?) is embedded into L* and, with B = B(0,1) and v € W'*3(B), we have
v —vBllLis) < Cl|Dvl| a3 (10.44)

Proof. The above Sobolev embedding will be proved, in a slightly better form, in the next chapter.
We present a proof of (10.44), which is less standard. The starting point is the usual Poincaré
inequality

||U — UB||L4/3(B) S C||DU||L4/3(B). (1045)
We may assume, with no loss of generality, that vg = 0. We extend v by reflections in a
v(x), ifreB

neighborhood of B by setting o(x) = . The new function o is in

v(z/|z)?), ifl<|z]<3/2
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W4/3(B(0,3/2) and satisfies |9 zas < C|[v||ass and || D3| pas < C||Dv||ass. Next let & € CF°
bes. t. ® =1 in B and supp ® C B(0,3/2). Set w = &5 € WH¥/3(R?). Then

[0llem) < lJwl[rs < Cl[Dw|[pars < C([[0]pass + [[DO pars) < Cl|0][pass + [[Do]|ass) < C”D(U||L4/3)'
10.46

]
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Chapter 11

Improved Sobolev embeddings

The usual form of the Sobolev embeddings states that W'P(RY) ¢ LN?/(N=P) provided 1 < p < N.
In this chapter, we will improve the conclusion to W'?(RN) c LNP/(N=P)P; this is slightly better,

> p, and thus LN?/(N=p)» — [Np/(N=p)

since

11.1 An equivalent norm in Lorentz spaces

Let f: RY — C be a measurable function and let F : (0, 00) — [0, 00| be its distribution function.
Intuitively, we may think of F' as a bijection of (0, c0) into itself. Then, if p,q < oo and if f* = F~!
(which is decreasing), we may (formally) compute the LP? quasi-norm as follows:

10 = / [ ()t = — / SOP( )11 () ' (5)ds = p* / SP(pY(s)ds; (111)

here, the - sign at the beginning of the computation comes from the fact that F' is decreasing. The
second equality is obtained through the change of variable F'(t) = s, the third one arises after an
integration by parts.

The above equality maybe rewritten as

1 lzoa = 1P Fllaoeparrey ~ 17 F* [l aqco,oopsaeso)- (11.2)
In this section, we will see that this formula is right!...provided we interpret it accurately.

Definition 4. The non increasing rearrangement f* : [0,00) — [0, 00| of f is defined through

the formula
f5(t) =sup{s > 0; F(s) <t}. (11.3)

We note that, when F is a bijection, we have f* = F~1
Before going further, we warn the reader that all the functions f we will rearrange in this chapter

71
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satisfy the following property

(H) tliglo F(t) =0.
This is not too restrictive, since we will deal with functions in Lorentz spaces. These functions
satisfy the inequality F'(t) < Ct~P, thus they do satisfy (H). Note that, in particular, this implies
that f*(t) < oo for each t. Hypothesis (H), though needed sometimes in the proofs, will never be
mentioned explicitly as hypothesis.
The elementary results we gather below explain, in particular, why f* is called the non increasing
rearrangement of f.

Proposition 15. a) F' is continuous from the right.

b) F(f*(t)) <t everywhere (in other words, inf = min in the definition of f*).

c) f* is non increasing and continuous from the right.

d) f and f* are equally distributed, i. e., [{x € RY ; |f(z)] > t}| = [{s € (0,00) ; f*(s) > t}| for
each t > 0.

e) [* depends continuously on f in the following sense: if (f,) is a sequence of functions s. t.

\fo(2)] /| f(2)| for a. e. x € RN, then fi(t) / f*(t) for each t > 0.
F) We have ( +.9)'(@1) < 1)+ 9°(). Move generaity, (3 15) (S2t) < () (1)

Proof. a) follows from the equality {|f| > t} = U{|f| > t + 1/n}, which implies that F(t) =
lim F'(t + 1/n).

b) Let s = f*(¢). Then F(s+¢) <t for € > 0, and thus F(s) <t.

c¢) The fact that f* is non increasing is clear from the definition. Concerning the second assertion,
it suffices to prove that f*(¢t +0) > f*(¢). Let ¢, \, t. Then F(f*(t,)) < t,, which implies that
F(f*(t+0)) <t, and thus F(f*(t +0)) <t, that is f*(t +0) > f*(¢).

d) Since f* is non increasing, we have |[{s € (0,00) ; f*(s) > t}| = 7, where 7 is uniquely defined
by f*(s) > tif s <7 and f*(s) < tif s > 7. In view of the conclusion we want, it suffices to check
that f*(s) > tif s < F(t) and that f*(s) <t if s > F(t). If s < F(t), then F(f*(s)) < s < F(t)
and thus f*(s) > t. On the other hand, if s > F'(¢), then ¢t > f*(s), by definition of f*(s).

e) We note that |f| < |g| = f* < g¢*; therefore, the sequence (f}) is non decreasing and
h(t) := lim fr(t) < f*(t) for each t. Hence, it suffices to prove that h(t) > f*(¢), i. e., that
F(h(t)) <t. We note that, for each s, we have F,,(s) — F(s), since the set {|f| > s} is the union
of the non decreasing sequence ({|f.| > s}). Thus F,(f:(t)) <t = F,(h(t)) <t = F(h(t)) <t,
as needed.

f) Let s = f*(t) and 7 = ¢*(t). Then |{|f| > s}| < ¢ and |{|g| > 7}| < t. Since {|f + g| >
s+71} CA{|fl >stU{lg| > 7}, we find that [{|f+g| >s+7} <2t i e, (f+9)(2) <s+7=

f1 (@) + g7 (). O

We next justify the equality (11.1).



11.1. AN EQUIVALENT NORM IN LORENTZ SPACES 73

Proposition 16. For 1 < p < oo and 1 < g < oo, we have || f| o ~ Y2 f*|| a(0,00)at/0)- For
p = 00, we have || f|lre~ = ||f*|z<-

Proof. We start with the case p = oco; we will prove the equality of the quasi-norms. Indeed,

[fllzoea = [[fllzee = inf{s ; F(s) = 0} = inf{s ; F(s) <0} = f(0) = [[/[|=, (11.4)

since f* is non increasing and continuous from the right.

Let now p < oo and g = o0o; once again, we will prove the equality of the quasi-norms.

7 <7 Let C = ||f|lzpe = suptFYP(t). Let t > 0. With s = f*(t), we want to prove that
t'/Ps < C. If s = 0, there is nothing to prove. If s = oo, then F(7) > t for each 7, and then
C =o0. If s € (0,00), then F(s —¢) >t for small € > 0, and thus

C
tPs < fUP(s —¢)s < i

11.5
= (11.5)

and the desired conclusion follows by letting ¢ — 0.
” > " With C = supt'/?f*(t), we will prove that tF'/?(t) < C for each t > 0. If F(t) = 0,
there is nothing to prove. If F'(t) = oo, then f*(s) > t for each s, and thus C' = co. Finally, if
u= F(t) € (0,00), let, for small ¢ > 0, u. = u —ec > 0. Then F(t) > u. and thus f*(u.) > t. We
find that

tFYP(t) < f*(u — e)ul/?, (11.6)

and we conclude by letting ¢ — 0.

Finally, we consider the case 1 < p,q < oo. In view of the preceding proposition, it suffices to
prove the equality pl|f||,.. = ||t1/pf ||Lq (0.00):dt/2) When f s a step function; the general case will
follow by monotone convergence, by approx1mat1ng an arbitrary function f with a sequence (f,)
s. t. each f, is a step function and |f,| /" |f|.- In addition, since the quantities we consider do
not distinguish between f and |f|, we may assume that f > 0. Let then f = > a,xa,, where
a; > as > ... > ap > 0 and the sets A, are measurable and mutually disjoint. Set b, = |A,|,
g =>b+...+0b,co=0and cgr; = oco. Then, with ap = 0o and a1 = 0, we have F(t) = ¢ if
t € [ai41,a;). On the other hand, f*(t) = a;41 if t € [¢;, ¢;41). Then

PN = pz / (4 () = Z(coq/p[(aoq—(amm (11.7)

=1
[az+1 ,a1)

and
k—

172 F* Vo opaerey = Z / (9 ) = 23 (@) () ?? — ()7, (118)

q=0

’U

[01 ci41)

so that the two quantities are equal (since ¢ = 0 and ax4; = 0). [
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11.2  Properties of f*

Lemma 21. For each t > 0 we have (with F the distribution function of f)

F(f* (1) 0o
/ f*(s)ds:F(f*(t))f*(t)+/F(s)ds. (11.9)
0 fx()
In particular, /F(s)dsg/f*(s)ds.
fx() 0
[f(@)], if |f(z)| > f*(t)
P’I”OOf Let g( ) {07 if |f(l’) < f*<t)

F(s), if s > f*(¢)

F(f(t), ifs<f(t)
the other hand, if 7 < F(f*(t)), then clearly ¢*(7) = f*(7). The equality ||g||r: = ||g*||rx reads

then / G(s)ds = / g*(s)ds, which is precisely the desired equality. ]

, whose distribution function G is given by

Let 7 > F(f*(t)). Then G(s) < 7 for each s and thus ¢g*(7) = 0. On

Although it is actually part of the preceding proof, we emphasize for later use the following

f@. @ >a

0, otherwise

Corollary 16. Let, for a > 0, fo(z) = {

ol < [ £()ds. (11.10)
0

Lemma 22. Let F' be the distribution function of f. Then

f/gt)
0

Proof. Let I be the 1. h. s. of (11.11). Fubini’s theorem implies that

o\%

g (uw)duds = f*(t) /g*(s)ds—l—/f*(u)g*(u)du. (11.11)

[e.9]

[ /g*(u)y{s s < f(t) and u < F(s)}|du. (11.12)

0
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Note that u < F(s) <= f*(u) > s, and therefore

, ) B o ey )0, f*(@),  ifu<t
{s; s< f*(t)and u < F(s)} = (0, min(f*(u), f*(t))) = {(O,f*(u)), ot (11.13)
Thus . o
~ [sr @ [ rwg (11.14)
whence the result. : t O

Lemma 23. Let A C RY be a measurable set of measure t. Then

/\fl S/tf*(s)d& (11.15)

Proof. We may replace f by fxa (assuming thus f supported in A), since in this way the 1. h. s.
of (11.15) remains unchanged, while the r. h. s. is not increased. In this case, we have F(s) <t
for each s, and thus g*(s) = 0 if s > ¢t. Therefore,

J1=1slw =171 = [ £)is= [ 1 sas (11.16)
A 0 0

]

11.3 Rearrangement and convolutions

The reason we considered f* is that it is related convolution products. We start with some
elementary, though tricky, results linking these objects.

Lemma 24. Let f bes. t. |f| < a and f =0 outside a set E s. t. |E| =t. Then

t

|fxgl < a/g*(s)ds- (11.17)

0
Proof. We have

1 *g(e)] < / F)llg(z — )y < o / gl <a [ g (s)ds. (11.18)

E T

S —

since |x — E| =t. =
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Lemma 25. Let f € L™ and set o = || f||p=. Then

o F(t
|f*g| < / / w)du dt. (11.19)

Proof. Using a monotone convergence argument, we may assume that f is a step function. Each
k

step function may be written as f = ZanA]., where a; > 0, A, C A,y C ... C A; and
j=1
0 < Akl <...<]Ai] <oco. With b; = a; + ... +a;, we have f =0b; in A; \ A;1;. We set by =0
and Ay = RY. Note that a = by.
Since |f * g| < Z ajXa, * |g|, the preceding lemma implies that
J

|4,

fxgl <) a /g*(t)dt. (11.20)
0
On the other hand, we have F(t) = |A;| if t € [bj_1,b;) and thus
F(t) bj Ayl 14,1 |45
/ / " (u)dudt = Z / / u)du dt = (b-—bj_l) / g (u)du = Zaj /g*(t)dt. (11.21)
0 0 0
[
Lemma 26. (O’Neil) Let h = f xg. Then
t t e8]
< %/f*(s)ds/g*(s)ds—i—/f*(s)g*(s)ds. (11.22)
0 0 t

Proof. We may assume that f,g > 0. We split f = f1 + fo, g = g1 + g2 and h = hy + hy + hs.
Here,

(i) f is cut at height f*(¢), i. e., we set fi(x) = {

(ii) similarly, g is cut at height ¢*(¢);
(iii) hy = fax g, ho = f1 * g2 and hy = f1 * g1.
We start by noting that f; < f, and thus the distribution function of f5 is dominated by the one

fx), if f(x)

"(1) e .
0, iff(x) and fo = f — fi;

f
fr(t)

IN V
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of f. Lemma 25 implies that

,7(1&
0
by Lemma 11.11.
Concerning hy, the inequality [[haze < || fil[z1||g2[/r combined with Corollary 16 yields

hy

IA

o\%

g (u)duds < f*(t /g ds+/f (11.23)

0

t
he < g*(t)/f*(s)ds. (11.24)
0
We next note that hs satisfies
t t
Ihalls < ilslonls < [ (s [ g°(s)ds (11.25)
0 0

To conclude, we start with the inequality h*(3t) < (hy)*(t) + (h2)*(t) + (hs)*(t). For h; and hs,
we use the fact that k*(¢) < [|k*||~ = ||k||L=. For hs, we rely on the inequality

1 17 1
k() < Z/ §)ds < ;/k* Jds —Hk*HLl = =kl (11.26)
0 0

We find that

t

* 1 *
h*(3t) < ;/f (s)ds

0

g (s)ds + (1) / G (s)ds + g () / [ (s)ds + / ()9 (s)ds; (11.27)

0

o —

we complete the proof noting that f*(¢ / f*(s)ds and a similar inequality holds for g. ]

1 1 1
Theorem 20. (O’Neil; simplified version) Let 1 < p,q,r < oo bes. t. —+—=1+—. If f € L
P q r
and g € L1, then f+g e L™P.

Remark 11. This statement is to be compared with the usual Young inequality, which asserts that
fxge L if feL? and g € LY. Our hypothesis is weaker, since LY C L% while the conclusion is
stronger, since L™ C L" (because p < r).

w?’
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Proof. Let h = f*g. We have to prove that Htl/rh*(t)HLp((O,OO);dt/t) < 00. Clearly, this is equivalent
to proving that |[t/"h*(3t)||Lr((0.00)at/ty < 00. In view of the preceding lemma, this amounts to
proving the following

\w“{/f @/‘ (5)d5]| o (0 peptty < 00

(ii) ]tl/r/f (8)ds]| Lr((0,00)dt /1) < 00
The fact that g € L% is equivalent to the boundedness of the map ¢ — 1/ 9g*(t), and thus
t

g*(t) < Ct~Y4. Tt follows that /g*(s)ds < C't'714 and therefore (i) and (ii) reduce to

0

t
OUWW*”/F@Mﬂm&www<%%
0

(ii) Ht”’"/8‘1/qf*(S)dSIILp«o,oo);dt/t) < 00.

t
To deal with (i’), we apply to f* the first Hardy’s inequality (Theorem 3) with r replaced by
p—1>0 and find that

¢ o0 t i
||t1/r_1/q/f*<5)d3”1£17((0,oo)§dt/t) - /t_p</f*(s>d ) / e = U < o
0 0 0 0

(11.28)

since || f*||ze = [[f||zo-
Concerning (ii’), the second Hardy’s inequality (Corollary 3) with r replaced by p/r and f replaced

by s+ s 19 f*(s) yields

Htl/r/s—l/qf (s )dsHLp(OOO ytt) = /tp/r—l(/ —1/‘1f (s)d > / ))Pds < oo.
t 0 t 0
(11.29)
O

Corollary 17. Set, with p,q,r as in O’Neil’s theorem, a = N/q. If f € L, then f * |x|~* € L™P.

Proof. Tt suffices to prove that |z|~® € L2 . This follows from |{|z|~® > t}| = Ct~N* = Ct™1. O
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11.4 Improved Sobolev embeddings

In the remaining part of this chapter, we assume that N > 2.
We start with a simple

Lemma 27. Let u € C(RY). Then

1 | Du(y)|
<
|U(ZL‘)| — |SN_1| |$ _ y|N—1

dy.

Proof. Let v € SN~ Then
o d o
u(x) = —[u(x + tv)] /d_
0

@F

0

and therefore

u(z)| < / |\ Du(z + to)|dt.
Integrating this inequality over v € SV~! we find that

S ju(a)] < //]Duatﬂv)]dtdsv

gN-1

We conclude by noting that the change of variables y = z +tv, t > 0, v € SV~1, yields

Du(y
]a:’ y]N 1dy— / /|Du (x 4 tv)|dtds,.

SNl

We next recall the following well-known result

u(z + tv))dt = /(Du)(x + tv) - vdt,

79

(11.30)

(11.31)

(11.32)

(11.33)

(11.34)

Theorem 21. (converse to the dominated convergence) Let 1 < p < co. If f,, — f in L?,
then there are a subsequence (f,,) and a function g € LP s. t. f,, — f a. e. and |f,,| < g.

Proof. After passing, if necessary, to a subsequence, we may assume that f, — f a. e. Consider
a subsequence (fn,) s. t. || fa, = fape |l < 277 and set g = | fo,| + Z | fre = frges|- Then

k>0

HQHLP < “anHLP + Z ank - fnkHHLl’ < o0

k>0

and, clearly, |f,,| < g for each k.

(11.35)

]
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N
Theorem 22. (O’Neil) Let 1 < p < N and set p* = N—p If u € WWP(RY), then u €
- P

LY P(RY).
Proof. The strategy consists in proving the following generalization of (11.30)

1 [ Du(y)| LpmN

dy, VueW"P(R"). 11.36
1] | g Ve WTEY (H1:30)
Assume (11.36) proved, for the moment. Corollary 17 with @ = N —1 implies that | Du||z|~N=1 €
LP"?. Since |u| < C|Du| * |z|~™~Y a. e., we obtain that v € L™,
It remains to prove (11.36). This is done by approximation. Consider a sequence (u,) C C§° s.
t. u, — wuin WP, Possibly after passing to a subsequence, we may assume that u, — u and
Du,, — Du outside a null set A and that |Du,| < g € LP. Since g |z|" V=Y € [P"P C [P we find
that /%d(y < oo for x outside a null set B. When x ¢ AU B, we find, by dominated

=Yy

convergence, that

u(z)] <

L[ Duay) L[ |Duly)
ST | o=y T o] | oy (118D

This completes the proof of the theorem. O

lu(z)| = lim |u,(z)| < liminf

11.5 The limiting case p=1

When p = 1, Theorem 20 is no longer true. To see this, we choose f = yp € L' (here, B is the

1
unit ball) and g(z) = ||~ which belongs to L% if g = N. We have f x g(z) = /ﬁdy If
r—y|*

B
|z| > 2, we have |z — y| ~ |z| when |y| < 1, and thus f % g(z) ~ |z|~® when |z| > 2. Therefore,

1
If % gllgan = 1f % gllze > C / T =0 (11.38)

{le>2}

A remarkable fact is that the conclusion of Theorem 22 still holds; the proof requires an argument
that does not involves convolution products. We start with one essential ingredient which is the
isoperimetric inequality. We will not need the sharp (i. e., with the best constant) version, so that
we will simply prove the following

Theorem 23. (weak form of the isoperimetric inequality) Let O be a smooth bounded domain in
RY and let ¥ be its boundary. Then

0| < C|x|MW-D, (11.39)
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Proof. Let p € Cg° bes. t. p >0, /p = 1 and supp p C B(0,1). We apply the Sobolev inequality
|lu|| v/v—1) < Cl|Dul|pr to the function u = xeo * p. and find that

lIxo * pell pv/v-1) < C’Z/ /33,05 y)dy|dx = CZ/ /njpe —y)dsy|dz;  (11.40)
j j

here, n; = n;(y) is the j*" component of the outer normal n to O at y. Thus
lIxo * pel| pv/v-1) < C//pg(x —y)dzds, = C|X]. (11.41)
3 RN

On the other hand, we have yo € LYW= and thus ||xo * p:||pxv/o-1 — ||xollLv/w-1) as e — 0.
This leads us to

O] = ixoll pyvav-n < C[Z, (11.42)

which ends the proof. O
Theorem 24. We have

|| pvov-na < Ol Dullp, ¥V ue WHHRY). (11.43)

Proof. The strategy of the proof is the following: we first prove the inequality (11.43) when
u € Cf°; the general case will be obtained from this one by passing to the limits.

Let u € C§°; Sard’s theorem insures that fact that, for a. e. ¢ > 0, all the points z s. t. |u(z)| =t
satisfy Vu(z) # 0; in other words, the set ¥, = {|u| = t} is a smooth hyper surface. For any such
t, set Op = {|u] > t}, which is a bounded open set. We claim that (*) O; is a smooth domain
with boundary ;. Indeed, it is obvious that 00; C ¥;. On the other hand, if x € ¥, and we set
v = Vu(z), then Taylor’s formula implies that u(xz + sv) — ¢t has the sign of s when s is close to
0. Thus on the one hand z € 0Oy, on the other hand O; is locally on one side of ¥;, which is the
same as (*).

With F' the distribution function of u, we have

F(t) = |0y < O[5, (11.44)

by the weak isoperimetric inequality. Thus, with H; = {u = t}, we have

]| v/ v—1)0 :/FUVWN(t)dt < C/\Et\dt:C/\Ht\dt:C/]Du\; (11.45)
0 R

the last equality follows from the coarea formula we will prove later.
We next turn to a general u € W', Consider a sequence (u,) C C§° s. t. u, — u in WhH! and
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pointwise outside an exceptional zero measure set B. We claim that the corresponding distribution
functions, F and F,,, satisfy F'(t) < liminf F},(¢) for each ¢. Indeed, let A = {|u] > t}, A, = {|un| >
t}. If x € A\ B, then = € A, for sufficiently large n. Put it otherwise, A\ B C liminf(A, \ B),
and thus

F(t) = |A| = |A\ B| < liminf |4, \ B| = liminf |A,| = liminf F,(t). (11.46)

Fatou’s lemma implies than that
Jull -1y = / FWN=D/N(})dt < liminf / FWN-DIN@§dt < ¢ / | Dul. (11.47)

We have thus obtained (11.43) in full generality. O

11.6 The limiting case p = N

The conclusion of Theorem 20 is wrong when 1/p+ 1/g = 1 (and p # 1). Indeed, let f(z) =
XBo,1/2|7| VP In |z|| 77, where 8 > 1/p. Then f € LP. Let also g(z) = |z|~7 € LI. We claim
that fxg ¢ L* if § is well-chosen. We start by noting that Fatou’s lemma implies that f*g(0) <
limiglff « g(z). Therefore, f*g & L if f*g(0) = oo. Since f* g(0) = / lz| ™| In ||| Pda,

{le|<1/2}
we find that f % g(0) =00 if § < 1.
Consequently, we may not use Theorem 20 in the proof of Theorem 22 when p = N. Actually,
when p = N, the expected conclusion of Theorem 22, namely W1» C L*, is wrong: it is easy to
see that the function given by f(z) = xp0,1/2)|In|z||%, where 0 < o <1 —1/N, belongs to W,
but not to L>. However, we will see that each function in W is "almost” bounded. We start
with a simple (and non optimal) result.

1
Proposition 17. There are constants ¢,C > 0 s. t. E/GXP(CW —up|) < C for each u €
B

WHEN(RYN) 5. t. ||[Duljpv < 1.

Proof. The above estimate follows immediately from Theorem 17 and the following result. [
Proposition 18. We have, for some C' depending only on N,

1
— [ lu—ug| < C||Dul|;~y, ¥V ueWhHY, 11.48
| B
B
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Proof. It suffices to prove (11.48) when u € C§°; the general case is obtained by passing to the
limits in (11.48) when B is kept fixed. If B = B(x, R), then

|B|/| up| |B|23/ / u(y + z) —u(y))dz|dy < |B\2/ / lu(y + 2) — u(y)|dy d-.

B B(0,R)
(11.49)
Applying Taylor’s formula in integral form, we find that

1
|B|/|u ug| < |B|2/ / /| (Du)(y+tz)||z|dt dz dy < TaN= 1/ / /|(Du)(y—|—t2)|dtdzdy.

B B(0,R) 0 B(0,R) 0
(11.50)
For each t and z, Holder’s inequality implies that
[ D)+ 21dy < 1Dl B 2R NI < (1151)
B
so that )
1 C||Dul||~
B B(O,R) 0
m
~D in the preceding exponential integrability result.

We may actually replace |u| by |u|Y/®

The statement we give below includes the assumption that supp uw C B. This is not a crucial
assumption; if we want to remove it, it suffices to apply the theorem when B is replaced by B*
(the ball concentric with B and twice larger) and w is replaced by ¢u, where ¢ is a cutoff function
supported in B* and that equals 1 in B. However, the resulting inequality is less elegant.

Theorem 25. (Trudinger) Let u be a WYY function supported in B. If ||[Dul|;x < 1, then

1
E/exp (c|u|N/(N*1)) <C, (11.53)
B

where ¢, C' > 0 depend only on N.

Proof. We may assume that B = B(0, R). We start by noting that (11.30) is valid for a compactly
supported function u € WV, Indeed, v being compactly supported, it belongs to W12N/3 - we
may therefore rely on (11.36).

Let now f = |Du|, which belongs to L and is supported in B. Set g = f * |2|"™~=Y. In view of
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1
(11.30), it suffices to prove that E/exp (cgN/(N_l)) < C provided that ||f||;~» < 1. The key

B
result in proving this estimate is the following inequality
g(z) < COMF(z) + (In(2R/8)N-V/Ny Ve B,Y e (0,R). (11.54)

Assume (11.54) proved, for the moment. We consider, for € B, the two following possibilities:
(i) if ziss. t. Mf(z) < R, we choose § = R and find that g(z) < C
(ii) if M f(z) > R, we choose § = 1/M f(x) and find that g(x) < C(1 + In(RM f(z))N-1/N),
Thus, in any event, we have g(z)/" ™" < O(1 + (In(RMf(z))+), so that exp (c g/ =D@) <
Ci (14 (RMf(x))“?). Choosing ¢ s. t. ¢cCy = N, we find that

- [exp (e ) < % JasRA My <cas [ me) <cas i < s
B B

by the maximal inequalities.
It thus remains to establish (11.54). We have

flz-y) fa—y), _
/ T |N 1 / he dy = I, + I. (11.56)

B(0,5) B(z,R)\B(0,6)

To estimate I;, we note that I; = f * h(z), where h(y) = XB(075)|y]_(N_1). Since h is integrable,
radial and non increasing, we have Iy < M f(z)||h|r = CoMf(x). We complete the proof of
(11.54) by noting that Holder’s inequality combined with the fact that || f|| v = 1 yields

fzs( / |y|—N>(N1)/Ns( / |y|-N)(N1)/N Cn(2R/8) NI/, (11.57)

B(x,R)\B(0,0) B(0,2R)\B(0,5)
[

11.7 The coarea formula

We start by recalling some simple facts from linear algebra. If A is a N x m matrix, with N > m,

we set |A| = \/Z(det A;)?; the sum is computed over the C} m x m minors obtained from

A. The reason we are interested in such quantities is that, if ¥ is a m-dimensional manifold
parametrized as O 3 y — ®(y) € X, with O open set in R™, then

/f ds, — /f DIDD(y)|dy. (11.58)
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Lemma 28. Let B be an invertible N x N matriz and let B be the N x (N — 1) matriz obtained
by deleting the first column in A. If v is the first line of A™', then |B| = |v||A|.

Proof. Let A = (a;;) and let I';; be the cofactor of a;;, i. e., the determinant of the (N —1) x (N —1)

N

matrix obtained by deleting the i® line and the j*® column of A. Then |B| = Z (det T';)2.
=1

On the other hand, we have v = |A|~'((—1)""T;;)’=Y, and the conclusion is obvious. O

Theorem 26. (light version of the coarea formula of Federer) Let u € C°(RY;R) and let
= {u =t} (which is a smooth hyper surface for a. e. t). If f € LY(RY;|Du|dz), then:
a) for a. e. t, fis, is integrable with respect to the surface measure on 3;;

b) the map t — /f(gv)dsac is measurable;

c)//f ds,dt /f|Du|

R ¢

Proof. We may assume f > 0. Let C be the set of the critical values of u, let Z be the set of the
critical points of u and set U = RY \ Z and A = v~ (C). Sard’s lemma implies that |C] = 0.

Since uyy is an epimorphism, A\ Z = (uy) ! (C) is a null set. Thus / f|Du| = 0. Therefore,

A\Z

/f\Du| = 0. On the other hand, //f )ds,dt = //f )ds.dt, provided the first integral

R 3¢ R\C Xt
makes sense. Consequently, we may replace RY by O = RM \ A, and thus assume that u has no
critical points in the open set where it is defined.
Since u is of constant rank 1 in O, we may locally flatten the coordinates in order to have u = x;.

More specifically, there is a covering O = U O; of O with open sets, s. t. for each i there is a
diffeomorphism ®@; : (0,1)Y — O; and there is some j = j; € {1,..., N} s. t. uo ®;(y) = y; + Ci,
y € (0,1)¥. Using a partition of the unit subordinate to the covering O = UO“ we may
assume that: (i) u is defined in an open set O, (ii) there is a diffeomorphism ® : (0,&)¥ — O
s. t. uo®(y) =y +C, y € (0,6)N. We may also assume, without loss of generality, that
C' = 0. Then ¥, is non empty iff ¢ € (0,¢), and if this is the case, then ¥, is parametrized by

(0,)N"1 5 o/ +— ®(t,y'). Let B(t,y') be the N x (N — 1) matrix obtained from the Jacobian
matrix D®(t,y") by deleting the first column. Then

/ f(x)ds, = / £t B(t.y)|dy (11.59)

(075)N—1
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from which it is clear that a) and b) of the theorem hold.
Concerning c), it reduces to

/f By |dy—/f )| Du()|dz. (11.60)

(0, )N

If we perform, in the second integral, the change of variables x = ®(y), we are led to proving the
equality

/ F(@())| Bw)ldy = / F(®()) | Du(®(1)) | D(y)|dy. (11.61)

Since u o ®(y) = y1, we find by differentiation that *D®(y)Du(®(y)) = (1,0,...,0). In other
words, Du(®(y)) is the first column of the matrix (‘D®(y))~!, i. e., the first hne of the matrix
(D®(y))~*. Lemma 28 implies that |Du(®(y))||D®(y)| = |B(y)|. Equahty (11.61) is established.

[l



Chapter 12

Traces

12.1 Definition of the trace

We discuss here the properties of the "restrictions” of Sobolev maps to hyper surfaces, e. g., to the
boundary of a smooth domain. There is a standard reduction procedure which allows to replace
a "smooth” (at least Lipschitz) hyper surface with a hyperplane; this is done by flattening locally
the coordinates. Since this part works without any problem and we want to insist on the analytic
part, we will simply consider in this chapter maps defined in the whole R" and consider properties
of their trace on the hyperplane H = {z = (z/,zy) € RY ; 2y = 0}, which we identify with RV~
We start by recalling the following

Proposition 19. The map u — uy, initially defined from C§*(RY) into Cg°(RN1), extends
uniquely by density to a linear map (called trace map) u — tr u from WLHP(RYN) into LP(RY),
for1 <p< 0.

We will elude here the case of W, Maps in W1 are Lipschitz, thus continuous, and in this
case the trace is simply the restriction.

Proof. Fix a function ¢ € C°(R) s. t. ¢(0) = 1 and supp ¢ C (—1,1). If v € C§°, then
v =up(zy) € C(RN ' x(-1,1)) and ujy = vjy. In addition, it is clear that |[v||y1s < C|lullpis.
It therefore suffices to prove that ||v|g|/z» < C||v||w1». This follows from

1
/|v(:c',0)|pdx’:/’/GNv(x’,t)dt
el o0

When 1 < p < 00, the above result is not sharp, in the following sense: if f is an arbitrary map
in LP(RY~1), we can not always find a map u € W s. t. tr u = f. In other words, the trace

p
da! < / Dol < || Do|l,. (12.1)

Hx(0,1)

O

87
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map is not surjective between the spaces we consider.
In this chapter, we will determine the image of the trace map.

Definition 5. For 0 <s <1 and 1 < p < oo, we define

WP = WeP(RY) = {f € LP(RY) ; / %dw dy < oo}, (12.2)
RN RN

equipped with the norm

_ p 1/p
e =1+ ([ [T 000y ) (123)

RN RN

We let the reader check that W#*P is a Banach space.
The main result of this chapter states that tr W1P(RY) = W-1/PP(RN-1). We start with some
preliminary results.

Lemma 29. C®°(RY) N W*P(RY) is dense into W*P(RY) for 0 < s <1 and 1 < p < co.

Proof. Let p be a standard mollifier (i. e., p € C§°, p > 0, /p =1, supp p C B(0,1)). We will

prove that, if f € W*P then f. = f*p. — f in WP, Clearly, f. — f in LP. It remains to prove
that, with g. = f. — f, we have

IE:/ 19:(2) = 9y ’pdxdy—//lgax—i_h ge( )|pdmdh—>0 ase — 0. (12.4)

|£B— |N+sp |h|N+sp
RN RN RN RN

In order to estimate I., we start by noting that

9e(® + h) — ge(x) = / (fle+h—y) = f(z+h)— flz—y)+ f(@))p-(y)dy. (12.5)

B(0,¢)

Using in addition the fact that p, < Ce™", we find that

e+ 1) = g.(0)| < 55 / fath=y) = f@+h) = f—y) + @l (120)

We next consider the two following cases:
(i) if |h| < €, we have

040 -0 < 5 [ (S +h-y) = S — gl +17@) ~ fat Ry (127

B(0,¢)
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(i) if |h| > €, we use the inequality

040 - 0@ < 5 [ (5@+h-y) = S+ DI+ - fa-y)dy. (129

B(0,¢)

Thus [ < ¢ (Jl + JQ + Jg + J4) where

n={ [ ( [ 1t sn— f(x—y>|dy)p|h|-<N+sp>dhdas; (12.0)

RN {|h|<e} B(0,e)

Jzz/ / (/|fx+h (x)|dy)p|h|_(N+Sp)dhdx; (12.10)

RN {|h|<e}  B(0,e)

J3:/ / (/|f(x+h—y)—f(x+h)|dy)p|h|_(N+5p)dhdx; (12.11)

RN {|h|ze}  B(0s)

J4:/ / (/\f(x—y)—f(x)|dy)p]h]_(N+Sp)dhdm. (12.12)

RN {|h|ze}  B(0s)

We will prove that e"?.J; — 0, j = 1,...,4. The only ingredient we use in the proof is

: faety) —f@PF,
ll_r)l(l)// EEE dy = 0; (12.13)

RN B(0,e)

this follows easily by dominated convergence.

P
We start with J,. Noting that ( / |f(x +h) — f(x)|dy) = CeN?|f(z + h) — f(x)|P, we find

B(0,¢)
that
B) — p
e NPy = C/ / f(z J|rh|J)V+spf(I)| dh — 0. (12.14)
RN B(0,¢)

For J;, Holder’s inequality with exponents p and p’ implies that

(/'f“”rh 0) f(frf—y)ld?/)pﬂB(O?&)l”‘l [f(z+h—y)— flz—y)Pdy, (12.15)

B(0,e) B(0,e)
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and thus
e NP < CeN/ / / |f(x+h—y) — fz—y)|Pdy |h|" NP dh dz. (12.16)

RN {|h|<e} B(0,e)

For fixed y and h, the change of variables x — y = z leads to
e M < 0/ / |f(z+h) — f(2)|P|h|" N FPdhdz — 0. (12.17)

RN {[h|<e}

We next estimate Js; the computation for Jy is similar and will be omitted. Inequality (12.15)
implies that

e NP J < Ce™ / / / |f(x+h—1vy) — f(z+ h)[Ph|~ NP dy dh da. (12.18)
RN {|h|>e} B(0,e)

In this integral, we fix y and h and make the change of variables x + h = z. Next we integrate in
h and find that

€_Np<]3§0/ / hiG _jv)Jr;,f( dde<C/ / |y|N;p /(2 )‘pdydz—%]. (12.19)
(

N B(0,e) RN B(0,¢)

]

Lemma 30. Ifu € C(RYN) N WP, then tr u = uy.

Proof. Let p be a standard mollifier s. t. p(0) = 1 and set u. = p(e-)(u * p.). Clearly, u. € C§°
and u. — w in W, Thus Ui = tT ue — tr win LP (and thus in D). On the other hand, Ue|F
converges to uy uniformly on compacts (and thus in D’), whence the conclusion. O]

The same argument leads to the following variant
Lemma 31. Assume that u € WP is continuous in a neighborhood of H. Then tr u = uy.

Lemma 32. Letu € C(RM)NCHRN\ H). Assume that the pointwise differential Du of u satisfies
Du € LP(RY). Then Du is also the distributional differential of .

Proof. We have to prove that /Djugo = —/u(?jgo, peCr, j=1,...,N. When j < N —1,

this follows simply by Fubini’s theorem. Assume j = N. We integrate by parts / Dyup in the
set {x € RY ; |xy| > ¢} and next let ¢ — 0. We find that

/DNugo = hm( / wpdS, — / wpdS, — / u@Ngodx) = —/u@Ngod:E. (12.20)

{zn=—¢} {zn=¢} {lzn[>e}

]
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12.2 Trace of WP, 1 < p < o0

Theorem 27. (Gagliardo) Let p € (1,00).
a) If u € WHP(RYN), then tr u € WI=VPP(RNY) and ||tr ul|ypi-1/mp < C|luwre.

b) Conversely, let f € W'=VYPP(RN=Y). Then there is some u € W'P(RN) 5. t. tru = f. In
addition, we may pick w s. t. ||u|lwre < C|tr u|lypi-1/pp-

Remark 12. Let T : W'P(RY) — W=V/pr(RN=Y), Tu = tr u. T is linear, and the above theorem
implies that T is continuous and surjective. Then the last conclusion in b) follows from the open
map theorem (each surjective linear continuous map between two Banach spaces has a bounded
right inverse). However, we will see during the proof a stronger conclusion: we will construct in
b) a linear right inverse, i. e. , the map f+— w in b) will be linear.

Proof. a) By density, it suffices to prove that
”u|H”W1*1/P,p S CHUHWLP v u < Cgo- (12.21)

We start by noting that we already know that ||ug||z» < C||lu||wre; thus it suffices to establish,
with f(z') = u(a2’,0), the inequality

= / / Jlal+ ) = Jl /)|pdh’dx’SCR[|Du(x)|pdx. (12.22)

|/ [N+p—2
RN—-1RN-1

The starting point is the inequality
|f@" + 1) = f@)] < [fa"+ 1) — w2 + 12, |W/2)[ + | f(2)) —u(a"+ W, [P]/2)],  (12.23)
which implies that I < C(I; + I5), where

_ [f@ + W) —u(a” + /2, [W2)]7 |[f(@) — (@ + W/2, |W]/2)]P
Il_// B[N =2 ’12_// |

|1/ [N 2
RN-1RN-1 RN-1RN-1
(12.24)
If we perform, in [, the change of variables ' + h' = ¢/, next we change h’ into —h’, we see that
I, = I, and thus
— n /2, |h'|/2
r<c / / qu’!;ﬂ’ P2 gy gy (12.25)

RN-1RN-1
Changing A’ into 2k’ and applying the Leibniz-Newton formula, we find that
|%']

p
[<c / / (/|Du &+t )|, )y> |~ +0=2) gkt 1y (12.26)

RN-1RN-1
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Expressing k£’ in polar coordinates, we find that

I<C / / /(/]Du 7'+ tw, t)]dt) s Pdsds, dz’. (12.27)

RN-1 gN—2

Applying, for fixed 2’ and w, Hardy’s inequality in to the double integral in s and ¢, we find that

I1<C / / /]Du z' + tw, t)|Pdt ds,, dz’. (12.28)

RN-1 gN-2

Integrating, in the above inequality, first in 2/, next in w, we find that

I<c / /\Du(m’,t)\pdtdx’ =C / |Du(x)[Pdz < C||Dul|?,. (12.29)

RN-1 0 RNT

b) It suffices to construct a linear map f + u, f € CRN"Y) N WI=Vrr o € WIP(RY) s, t. tr
u=f and |Jullpir < C||f|lwi-1pp. We fix a standard mollifier p in R¥~! and an even function
peC®R)s. t. 9(0)=1,0<¢ <1andsupp ¢ C (—1/2,1/2). We define, for t # 0, v(z’,t) =
[ ppy(a) and u(a’,t) = v(z’, t)p(t). We extend u to RY by setting u(2’,0) = f(2/). Clearly, the
map f — u is linear and u € C°(RY \ H). In addition, u € C(RY) when f is continuous. We
also note that, for a fixed t # 0, Young’s inequality implies that ||f * p|lr < || ]|z, and thus
lullze < || fllzr- Since u is even with respect to zy, it suffices to prove, in view of Lemmata 30
and 32, that the usual differential Du of u satisfies

’\|p
/ /|Du o DPdtde’ < C / / (@ Eny” TP 4 a1 112, (12.30)

RN-1 RN-1RN-1

For 1 < j < N—1, we have |0;u| < |0;v|. On the other hand, [Oyu| < Clv|xgy-1x(—1/2,1/2) +|On0].
Since [[|v|xgy-1x(—1/2,1/2)lr < ||ul s, it suffices to prove the estimate

/ / \Du(a’,t)|Pdt da’ < C / / / (””'ﬁ/;v:f(m')‘pdy'dx'. (12.31)

RN-1 0O RN-1RN-1

Let 1<j<N-—-1 Since/ajp:(), we have

Do, t) = 1N / FW) @) (' = o) /dy =t / F) — F@)@p) (@ — ) /1)y, (12:32)
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so that o
o0l < i [ 1) = Faldy (12:33)
B(0,t)

d
We next claim that / E[pt(x’)]dx’ = 0. This follows from the fact that / ps = 1. Thus

d
ovele’st)| = | () = S@N G iy < 5 [ 1F6+) = Sl (230
B(0,t)
since %pt < Ct™N. We find that |Dv(z,t)| < th / |f(z" + ") — f(2")|dy', and therefore it

B(0,t)
suffices to establish the estimate

p / N N\ |p
/ /( / |f' +y) (x’)\dy’) tNeat da' < C / / |f(x HJNLP_{(M i d
RN-1 B(0,¢) RN-1RN-1 y
(12.35)

This is done as in the proof of lemma 29: Holder’s inequality applied to the integral over B(0,t)
implies that

I<c / / / |f(2 + ) — f(@)|Pdy t NP dt do’. (12.36)
RN-1 0 B(0,t)

Fubini’s theorem yields

o] o x n N1p /
I<C / / |f(l’/—|—y/)—f($/)|p/t N p+1dtdx/dy/ / |f |yi|yN+p 2( )| dy'dm.

RN—-1RN-1 ly/| RN—1RN-1

(12.37)
0

Corollary 18. Let f € W'=YPP(RN) and set , fort # 0, u(2/,t) = f*py(2')o(t). Thenu € WP
and tr u = f.

12.3 Trace of Wil

We start with some auxiliary results needed in the proof of the fact that the trace of Wt is L.

Lemma 33. Let u € WYY NWY4. Then the two traces of u (one in WP, the other one in Wh1),
coincide.
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Proof. If p is a standard mollifier s. t. p(0) = 1, then u. = p(e-)u * p. converges (as € — 0) to
w both in W' and in W4, Since, for u. € C§°, both traces coincide, we obtain the result by
passing to the limits. O

The same argument leads to the following result.
Lemma 34. Let u € W, For A# 0 and 2/ € RN, we have tr u(\ - —2') = (tr u)(\ - —2).

Lemma 35. Let f be the characteristic function of a cube in RN=1. Then f € W'=1/P» for
1<p<?2.

Proof. We may assume that C' = (—[,1)". If we consider in R¥~! the || - ||oc norm, then
dz’ dy
||f||W1 1/pp / / ‘33 y |N+p 2" (1238)
|| <l |y’ |>1

If |2/| <l and |y| >, then ¢y € RN"'\ B(2/,1 — |2']), and therefore

/|x |N+p2§ / MMZ c/ i — |2/]) (12.39)

ly’'|>1 |2 |>1—|z| I—|z’|

Since p < 2, we find that

Ti——ve / (-7 < C / A (12.40)

|z | <1 {lzj|<z1<l, j=1,...,N—2}

]

1
Lemma 36. Let C be a cube of size l in RN™! and set a = m){o. Then there is a map v € Wi
s. t. tr u=a and

|ullpr < el and || Dullp: < e (12.41)

Proof. We start with the case where C' is the unit cube (or any other cube of size 1). We fix a
p € (1,2). Since a € W'™V/PP we have a = tr ug for some v € W'P. In addition, Corollary 18
implies that we may assume uy compactly supported. Thus v € W' and tr ug = a (computed in
Wh1). Let now C be an arbitrary cube, which we may assume with sides parallel to the unit cube
Q. Let C = 2"+ (0,)N=1. Set u = I"W=Vyy(I71(- —2')). Then u € W and tr u = a. Inequality
(12.41) follows from the identities ||u||z1 = I||ug||z: and ||Du||pr = || Dug||z:- O

Theorem 28. (Gagliardo) Let f € L*(RN™Y). Then there is some w € WH(RN) s. t. tru= f
and ||ullwra < C fllrr-
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Remark 13. This time, the map f — u we construct is not linear.

Proof. The main ingredient is the following: if f € L!, then we may write, in L, f = Z An G,

where:
1

(i) each a,, is of the form a, = WXC,L;

(ii) each C,, is of size at most 1;

(i) 3 Pl < CJf .
Assuming that this can be achieved, here is the end of the proof: the preceding lemma implies
that each a,, is the trace of some u,, € W't s. t. ||u,|wr1i < C. The linearity of the trace and

property (iii) imply that the map u = Z Aatt, € WHE satisfies tr u = f and |Jully1a < O ]|z
It remains to perform the decomposition f = Z Anay,. For each j € N, let F; be the grid of cubes

of size 277, with sides parallel to the coordinate axes and having the origin among the edges. We
define the linear map 7} : L' — LY T;f(z) = fo if 2 € C € F;. Clearly, T} is of norm 1. We
claim that, for each f € L', we have T;f — f in L' as j — oo. This is clear when f € C§°;
the case of a general f follows by approximation using the fact that ||7;|| = 1. We may thus

find an increasing sequence of indices, (ji), s. t. |[fjllzr + Z | fires = Firller < C|fllpr. We

1
claim that f; . — f;, = Z Meak where each a” is of the form —-y¢ for some cube of size at

i &
most 1 and Z ISl = N fiwsr — firllzr. Indeed, fj,., — f; is constant on each cube C' € F, .,
1 .
and thus fjk+1 — fin = Z (fjk+l - fjk)|CXC’ so that fjk+1 — fi = Z AciArXe, with
€]
Ce}—jk+1 Ce}—jk-}—l

Ao = (fire — [in)ic|C|. We find that

||fjk+1 _fijL1 = Z /’fjk+1 _fjk| - Z |0H<fjk+1 _fjk)|C| - Z |/\C| (1242)

CG]‘—]' CE]‘—J‘ CE]'—J'

k+1 C k+1 k+1

1
Similarly, we may write f;, = Z MNa? | where each a® is of the form —- ¢ for some cube of size

o (&
at most 1 and Z N2 =1 £jollze-
Finally, we write f = Z Z Mak and this decomposition has the properties (i)-(iii). O
k. n

n-n?



